细化搜索
结果 1-3 的 3
Luteolin attenuates cognitive dysfunction induced by chronic cerebral hypoperfusion through the modulation of the PI3K/Akt pathway in rats
2021
He, Haitao | Chen, Xi
In our study, we evaluated the beneficial effect of luteolin in the treatment of cognitive dysfunction in rat models induced by cerebral hypoperfusion by two-vessel occlusion (2-VO). Seventy-five male Sprague Dawley rats were subjected to 2-VO surgery, in all but 15 (the sham group, group I) the ligation being permanent to impair cognitive abilities. The sham group rats received saline instead of a drug; 15 2-VO rats were not injected at all (the model group, group II); 15 2-VO rats were administered luteolin at 50 mg/kg b.w. (the lut 50 group, group III); to a further 15 luteolin was given at 100 mg/kg b.w. (the lut 100 group, group IV); and the final 15 received nimodipine at 16 mg/kg b.w. as positive controls (the nimodipine group, group V). Object recognition and Morris water maze tests were performed to investigate memory ability. A Western blot test was also conducted to assess expression of phosphatidylinositol 3-kinase (PI3K), its downstream target protein kinase B (Akt), and the phosphorylated form (P-Akt) in cerebral cortex and hippocampus tissue samples. Significant variations in the discrimination index in the object recognition test, the escape latencies in the Morris water maze test, and expression levels of PI3K-p110α and PI3K-p85 were observed three months after 2-VO surgery in both lut groups, with a significant change in the nimodipine group compared to the model group. P-Akt and Akt were expressed significantly higher in both lut groups and the nimodipine group than in the model group. Luteolin treatment of rats cognitively dysfunctional after experimental cerebral hypo perfusion was neuroprotective by activating the PI3K/Akt signals which inhibit neuronal death in the cerebral cortex and hippocampal region.
显示更多 [+] 显示较少 [-]Glibenclamide ameliorates the expression of neurotrophic factors in sevoflurane anaesthesia-induced oxidative stress and cognitive impairment in hippocampal neurons of old rats
2021
Several antidiabetic medications have been proposed as prospective treatments for cognitive impairments in type 2 diabetes patients, glibenclamide (GBC) among them. Our research aimed to evaluate the impact of GBC on hippocampal learning memory and inflammation due to enhanced neurotrophic signals induced by inhalation of sevoflurane. Rats (Sprague Dawley, both sexes) were assigned to four groups: a control (vehicle, p.o.), GBC (10 mg/kg b.w.; p.o.), low-dose sevoflurane and low-dose sevoflurane + GBC (10 mg/kg b.w.; p.o.) for 23 days. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed to analyse the count of apoptotic cells and ELISA was conducted to assess the protein signals. A Western blot, a Y-maze test, and a Morris maze test were performed, and the results analysed. Blood and tissues were collected, and isolation of RNA was performed with qRT-PCR. The Morris maze test results revealed an improvement in the length of the escape latency on days 1 (P < 0.05), 2 (P < 0.01), 3, and 4 in the low-dose Sevo group. Time spent in the quadrant and crossing axis and the percentage of spontaneous alterations showed a substantial decrease in the low-dose Sevo group which received GBC at 10 mg/kg b.w. Significant increases were shown in IL-6 and TNF-α levels in the low-dose Sevo group, whereas a decrease was evident in the GBC group. Our results indicate that glibenclamide may be a novel drug to prevent sevoflurane inhalation-induced impaired learning and reduce brain-derived neurotrophic factor release, which may be a vital target for the development of potential therapies for cognitive deficits and neurodegeneration.
显示更多 [+] 显示较少 [-]Duration of immunity after rabies vaccination in dogs: The Rabies Challenge Fund research study
2020
Dodds, W Jean | Larson, Laurie J. | Christine, Kris L. | Schultz, Ronald D.
A prospective study of 65 research beagles kept in a rabies-free environment was undertaken to determine the duration of immunity after they received licensed rabies vaccines. The eventual goal was to extend mandated rabies booster intervals to 5 or 7 years and help reduce the risk of vaccine-associated adverse events. Three groups of dogs were vaccinated with 1 of 2 commercial rabies vaccines or saline at 12 and 15 weeks of age. Beginning 5 years 5 months later, vaccinated and unvaccinated dogs were challenged with virulent rabies virus and observed for 90 days over a series of 3 trials. Humoral and cellular immune responses were examined by serology and flow cytometry. Brain tissue from all challenged dogs was tested for rabies virus. Challenge trial 1 was confounded due to insufficiently virulent virus. In trials 2 and 3 virulent challenge provided 100% mortality in controls. Vaccinate survival was 80% (4/5) after 6 years 7 months, 50% (6/12) after 7 years 1 month, and 20% (1/5) after 8years 0 months. Antibody responses 12 days post-challenge correlated strongly with survival. In a separate non-challenge trial, administration of either a recombinant or a killed rabies vaccine demonstrated memory antibody responses 6 years 1 month after initial vaccination compared with unvaccinated controls. Our data demonstrated that i) duration of immunity to rabies in vaccinated dogs extends beyond 3 years; ii) immunologic memory exists even in vaccinated dogs with serum antibody titer < 0.1 IU/mL; and iii) non-adjuvanted recombinant rabies vaccine induces excellent antibody responses in previously vaccinated dogs 14 days after administration.
显示更多 [+] 显示较少 [-]