细化搜索
结果 1-5 的 5
Development of multiplex PCR system for identification of glyphosate-tolerant sugar beet
2016
Присяжнюк, Л. М | Шитікова, Ю. В | Волчков, О. О
Purpose. To create a multiplex system for identification glyphosate-tolerant sugar beet by using PCR. Methods. Molecular genetic analysis. Results. The article presents the results of studies to determine the parameters of the polymerase chain reaction (PCR) in order to develop a multiplex system for identification of the structural elements of the design of transgenic gene cp 4 epsps, which provides tolerance to glyphosate. For amplicon target DNA sequences, the following values of temperature conditions of PCR were determined: step 1 (initial denaturation) 95 °C – 3 min; step 2 (specific reaction products accumulation): denaturation 95 °C – 45 s; hybridization of primers 55 °C – 50 s; elongation 72 °C – 1 min; number of cycles – 40; step 3 (final elongation) 72 °C – 6 min. A series of PCR were carried out for the purpose of selecting the optimal amount of DNA matrix for efficient estimate of transgenic sugar beet plants for the presence of specific sequences. Conclusions. To identify transgenic glyphosate-tolerant sugar beet, it is advisable to determine 35S promoter and gene cp 4 epsps in individual genotypes. It was found that during the selection of temperature parameters of multiplex reaction a 5 °C rise in primer hybridization temperature did not affect the identification of gene als that allowed to include specific primers for determination of this sequence as an internal control. Based on the results of test multiplex reactions, concentrations of dNTPs and Mg2+ ions were determined that allowed to exclude the possibility of non-specific fragments and false-negative results. The optimum amount of matrix DNA (100–150 ng) for an efficient estimate of transgenic sugar beet plants for the presence of specific sequences was determined. Obtained results allowed to develop a multiplex test system for identification of transgenic glyphosate-tolerant sugar beet which can be used for simultaneous determination of the 35S promoter, cp 4 epsps gene and als gene as an internal reaction control.
显示更多 [+] 显示较少 [-]KASP<sup>TM</sup> genotyping technology and its use in genetic-breeding programs (a study of maize)
2017
Волкова, Н. Е | Sokolov, V. M.
Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM) and its use in various genetic-breeding researching (a study of maize). Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its quality and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genotyping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how genomic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance) using traditional breeding approaches (phenotype selection) and molecular genetic methods (selection by markers) was proved that it takes four seasons (two years in case of greenhouses) in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions), while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor. Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, genetic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to introduce KASP genotyping technology in our country to solve a wide range of modern genetics, breeding, seed production tasks.
显示更多 [+] 显示较少 [-]Detection of genetically modified plants using LAMP (loop-mediated amplification) technologies
2021
Sorochynskyi, B. V.
Purpose. Analysis of the current state and experience on the loop-mediated amplification (LAMP) use to detect genetically modified plants. Methods. Literature search and analysis. Results. General information on the current state and use of the genetically modified plants is provided. Despite the wide distribution of genetically modified plants, the attitude towards them in society continues to remain somewhat wary. About 50 countries have introduced mandatory labeling of GM feed and products, provided that their content exceeds a certain threshold. In order to meet labeling requirements, effective and sensitive methods for detecting known genetic modifications in a variety of plant materials, food products and animal feed must be developed and standardized. The most common approaches to the detection of genetically modified organisms (GMOs) are the determination of specific proteins synthesized in transgenic plants and the detection of new introduced genes. Methods for the determination of GMOs based on the analysis of nucleic acids are more common, since such methods have greater sensitivity and specificity than the analysis of protein composition. Polymerase chain reaction (PCR) method is the main method of nucleic acid analysis, which is now wide used for the detection of GMOs. Loop-mediated amplification (LAMP), which can occur at a constant temperature and therefore does not require the use of expensive equipment may be an alternative to the PCR. Scientific articles about the use of the loop-mediated amplification (LAMP) for the detection of genetically modified plants were analyzed. Advantages and disadvantages of the polymerase chain reaction and loop-mediated amplification are compared. Conclusions. The main criteria for applying a method of GMO detection analysis are as follow: its sensitivity, time of reaction, availability and ease to use, cost of reagents and equipment, and the possibility for simultaneous detection of many samples.
显示更多 [+] 显示较少 [-]Allelic composition of puroindolinium genes and confectionery properties of flour of soft winter wheat samples
2020
Леонов, О. Ю | Шарипіна, Я. Ю | Усова, З. В | Суворова, К. Ю | Сахно, Т. В
Purpose. Identification of soft winter wheat varieties and lines from the Plant Production Institute nd. a. V. Ya. Yuryev, NAAS by allelic state of Pina–D1 and Pinb-D1 genes for targeted use in the breeding for high confectionery properties of flour. Methods. Identification of the Pina-D1 and Pinb-D1 genes allelic state was performed by polymerase chain reaction (PCR) using allele-specific primer pairs. Confectionery properties of flour were evaluated by determining the quality indicators: the water absorption capacity (WAC) of the flour, trial baking of cookies and evaluation of its quality. Results. According to the results of PCR analysis, 9 samples had an allelic composition of puroindoline genes (Pina-D1a and Pinb-D1a) characteristic for soft-grained varieties. Flour of the lines 'L137-26-0-2', 'L137-26-0-3' had the best confectionery properties, it had a WAC value less than 55%, cookies diameter 85 mm, cookies height 10 mm, estimation of a surface of cookies 7– 9 points, what meets the requirements for soft-grained wheat. 76% of the samples belonged to hard-grained varieties and had the corresponding alleles of the Pina-D1 or Pinb-D1 genes. In the studied sample, Pina-D1 gene is represented by 2 alleles: Pina-D1a and Pina-D1b. 27 samples had Pina-D1a allele, which also allows them to be used in breeding programs for grain quality when crossed with soft samples, 4 ones had Pina-D1b allele. As to Pinb-D1 gene, all hard grain samples had Pinb-D1b allele, and the 'Erythrospermum S 424-1 / 14' line was heterogeneous for Pinb-D1a / Pinb-D1b. The flour of these samples had typical for hard wheat quality indicators: WAC 68% and more, cookie diameter of 60–72 mm, cookie height of 13–15 mm, the surface evaluation of 1–4 points. Conclusions. The studies allowed to differentiate the breeding material and transfer a soft winter wheat cultivar of a confectionery use 'L137-26-0-3' ('Mazurok') which has an allelic structure of puroindolins genes (Pina-D1a and Pinb-D1a) characteristic for soft-grained varieties and high confectionery flour properties for qualification examination.
显示更多 [+] 显示较少 [-]Expression of gus and gfp genes in amphidiploid spelt wheat (Triticum spelta L.) after Agrobacterium-mediated transformation
2020
Кирієнко, А. В | Кучук, М. В | Щербак, Н. Л | Парій, М. Ф | Симоненко, Ю. В
Purpose. To study the expression of gus and gfp genes in callus explants of amphidiploid spelt wheat (Triticum spelta L.) after Agrobacterium-mediated genetic transformation. Methods. Winter spelt wheat of ‘Europa’ variety was chosen for transformation. Calli obtained from mature embryos were used as explants. Callus pre-cultivation was carried out on MS nutrient medium (Murashige–Skoog) supplemented with 2 mg/L 2.4-D (2.4-Dichlorophenoxyacetic acid) and 10 mg/L silver nitrate. For genetic transformation, Agrobacterium tumefaciens Conn., strain GV3101 and a genetic construct with reporter genes beta-glucuronidase (GUS) and green fluorescent protein (GFP) were used. Calli were transformed by inoculation with agrobacteria and vacuum infiltration. Then they were co-cultured on MS medium with 2 mg/L 2.4-D and 10 mg/L AgNO3, but without antibiotics. The expression of the gus gene was checked by histochemical and the gfp gene by visual analysis (fluorescence of the GFP protein in UV light). Gfp and gus gene expression levels were evaluated using ImajeJ software. The integration of the gfp and gus genes into the spelt genome was verified by PCR. Results. Genetic transformation of spelt callus explants by inoculation in a nutrient medium with agrobacteria and vacuum infiltration occurred at different frequencies. The level of expression of the gus gene during vacuum infiltration was 4.66 ± 0.74%, with inoculation – 4.00 ± 0.91%; and the gfp gene with vacuum infiltration – 3.66 ± 0.74%, with inoculation – 4.66 ± 1.39%. The level of expression of the gfp gene was higher when using inoculation with agrobacteria, and the gus gene was higher during vacuum infiltration. Using PCR analysis, the integration of the gfp and gus genes into the callus of spelt genome was confirmed. The length of the PCR product with primers for the gus gene was 240 bp, and 717 bp for the gfp gene. Conclusions. The use of vacuum infiltration and inoculation methods for spelt genetic transformation gave different results. The frequency of genetic transformation ranged from 3.66 to 4.66%. Agrobacterium-mediated genetic transformation of amphidiploid spelt wheat allows us to study the expression of gus and gfp reporter genes using callus explants derived from mature embryos
显示更多 [+] 显示较少 [-]