细化搜索
结果 1-10 的 305
A year-long field study of buried plastics reveals underestimation of plastic pollution on Hawaiian beaches 全文
2025
Delorme, Astrid | Poirion, Olivier B. | Lebreton, Laurent | Le Gac, Pierre Yves | Kāne, Kimeona | Royer, Sarah Jeanne
Global models estimate that two-thirds of floating ocean plastic has accumulated in coastal areas since the 1950s, with Hawaiʻi's windward shores particularly vulnerable due to their proximity to the North Pacific Garbage Patch. Our quarterly surveys revealed that 91% of recovered plastic particles were buried below the surface (deeper than 2 cm), with most particles being small fragments (93%) ranging from 5.4 to 7.9 mm. This study offers new insights into subsurface plastic pollution, exposing a previously hidden vertical distribution. We observed significant variations in plastic abundance across depths, beaches, and sampling periods, along with a positive correlation between particle size and sand grain size. Additionally, through reconciliation science, we critically reflect on the cultural impacts of our research, emphasizing the importance of aligning plastic pollution studies with local community values and environmental stewardship.
显示更多 [+] 显示较少 [-]Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: A one health concern 全文
2024
Bourdonnais, Erwan | Le Bris, Cédric | Brauge, Thomas | Midelet, Graziella
Antimicrobial resistance (AMR) is a burgeoning environmental concern demanding a comprehensive One Health investigation to thwart its transmission to animals and humans, ensuring food safety. Seafood, housing bacterial AMR, poses a direct threat to consumer health, amplifying the risk of hospitalization, invasive infections, and death due to compromised antimicrobial treatments. The associated antimicrobial resistance genes (ARGs) in diverse marine species can amass and transmit through various pathways, including surface contact, respiration, and feeding within food webs. Our research, focused on the English Channel and North Sea, pivotal economic areas, specifically explores the occurrence of four proposed AMR indicator genes (tet(A), blaTEM, sul1, and intI1) in a benthic food web. Analyzing 350 flatfish samples' skin, gills, and gut, our quantitative PCR (qPCR) results disclosed an overall prevalence of 71.4% for AMR indicator genes. Notably, sul1 and intI1 genes exhibited higher detection in fish skin, reaching a prevalence of 47.5%, compared to gills and gut samples. Proximity to major European ports (Le Havre, Dunkirk, Rotterdam) correlated with increased AMR gene frequencies in fish, suggesting these ports' potential role in AMR spread in marine environments. We observed a broad dispersion of indicator genes in the English Channel and the North Sea, influenced by sea currents, maritime traffic, and flatfish movements. In conclusion, sul1 and intI1 genes emerge as robust indicators of AMR contamination in the marine environment, evident in seawater and species representing a benthic food web. Further studies are imperative to delineate marine species' role in accumulating and transmitting AMR to humans via seafood consumption. This research sheds light on the urgent need for a concerted effort in comprehending and mitigating AMR risks in marine ecosystems within the context of One Health.
显示更多 [+] 显示较少 [-]Antimicrobial resistance and geographical distribution of Staphylococcus sp. isolated from whiting (Merlangius merlangus) and seawater in the English Channel and the North sea 全文
2024
Brauge, Thomas | Bourdonnais, Erwan | Trigueros, Sylvain | Cresson, Pierre | Debuiche, Sabine | Granier, Sophie A. | Midelet, Graziella
Staphylococcus is a significant food safety hazard. The marine environment serves as a source of food for humans and is subject to various human-induced discharges, which may contain Staphylococcus strains associated with antimicrobial resistance (AMR). The aim of this study was to assess the occurrence and geographical distribution of AMR Staphylococcus isolates in seawater and whiting (Merlangius merlangus) samples collected from the English Channel and the North Sea. We isolated and identified 238 Staphylococcus strains, including 12 coagulase-positive (CoPs) and 226 coagulase-negative (CoNs) strains. All CoPs isolates exhibited resistance to at least one of the 16 antibiotics tested. Among the CoNs strains, 52% demonstrated resistance to at least one antibiotic, and 7 isolates were classified as multi-drug resistant (MDR). In these MDR strains, we identified AMR genes that confirmed the resistance phenotype, as well as other AMR genes, such as quaternary ammonium resistance. One CoNS strain carried 9 AMR genes, including both antibiotic and biocide resistance genes. By mapping the AMR phenotypes, we demonstrated that rivers had a local influence, particularly near the English coast, on the occurrence of AMR Staphylococcus. The analysis of marine environmental parameters revealed that turbidity and phosphate concentration were implicated in the occurrence of AMR Staphylococcus. Our findings underscore the crucial role of wild whiting and seawater in the dissemination of AMR Staphylococcus within the marine environment, thereby posing a risk to human health.
显示更多 [+] 显示较少 [-]Perfluoroalkyl Substances (Pfas) Occurrence, Concentrations and Spatial Distribution Along the French Mediterranean Coast and Lagoons, Based on Active Biomonitoring 全文
2024
Herlory, Olivier | Briand, Marine | Munaron, Dominique | Boissery, Pierre | Giraud, Anaïs | Marchand, Philippe | Bouchoucha, Marc
Tracking PFAS in ecosystems is challenging. In this context, monitoring programs are crucial to fill data gaps, especially in marine environments, which are the ultimate outlets for these forever chemicals. The 2021 chemical contamination monitoring campaign along the French Mediterranean coast established a baseline for PFAS concentrations in mussels, with 90 % of measurements below quantification limits. When detected, long-chain PFCA's were predominant. Spatial distribution patterns suggested continuous PFAS inputs and complex dynamics, shaped by the influence of large watersheds and rivers (Rhône, Aude, Huveaune). Lapeyrade shallow lagoon stood out as the most contaminated site. Similar PFAS profiles in connected sites implied shared sources but raised questions about accumulation processes in mussels. While certain sites had evident sources (e.g., military airbase for Palo lagoon), others remained uncertain (e.g., Toulon bay). Coastal stations (Banyuls, Cap Agde, Brégançon, Pampelonne) showed PFAS contamination without clear onshore sources, possibly due to insufficient transportation process understanding.
显示更多 [+] 显示较少 [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics 全文
2022
Lemonnier, C. | Chalopin, Morgane | Huvet, Arnaud | Le Roux, Frederique | Labreuche, Yannick | Petton, Bruno | Maignien, Lois | Paul-pont, Ika | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
显示更多 [+] 显示较少 [-]Nanoplastics exposure modulate lipid and pigment compositions in diatoms 全文
2020
Gonzalez-fernandez, Carmen | Le Grand, Fabienne | Bideau, Antoine | Huvet, Arnaud | Paul-pont, Ika | Soudant, Philippe
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS–NH2) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL−1) and a high (5 μg mL−1) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol's at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom’ cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
显示更多 [+] 显示较少 [-]Polystyrene microbeads modulate the energy metabolism of the marine diatom Chaetoceros neogracile 全文
2019
Seoane, Marta | González-fernández, Carmen | Soudant, Philippe | Huvet, Arnaud | Esperanza, Marta | Cid, Ángeles | Paul-pont, Ika
Due to the growing concern about the presence of microplastics (MP) in the environment, the number of studies evaluating the toxicity of these small persistent particles on different marine species has increased in recent years. Few studies have addressed their impact on marine phytoplankton, a subject of great concern since they are primary producers of the aquatic food web. The aim of this study is to unravel the cytotoxicity of 2.5 μg mL−1 unlabelled amino-modified polystyrene beads of different sizes (0.5 and 2 μm) on the marine diatom Chaetoceros neogracile. In addition to traditional growth and photosynthesis endpoints, several physiological and biochemical parameters were monitored every 24 h in C. neogracile cells by flow cytometry during their exponential growth (72 h). Dynamic Light Scattering measurements revealed the strong aggregation and the negative charge of the beads assayed in the culture medium, which seemed to minimize particle interaction with cells and potentially associated impacts. Indeed, MP were not attached to the microalgal cell wall, as evidenced by scanning electron micrographs. Cell growth, morphology, photosynthesis, reactive oxygen species levels and membrane potential remained unaltered. However, exposure to MP significantly decreased the cellular esterase activity and the neutral lipid content. Microalgal oil bodies could serve as an energy source for maintaining a healthy cellular status. Thus, MP-exposed cells modulate their energy metabolism to properly acclimate to the stress conditions.
显示更多 [+] 显示较少 [-]Impact of chronic cadmium exposure at environmental dose on escape behaviour in sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae) 全文
2008
Faucher, Karine | Fichet, Denis | Miramand, Pierre | Lagardere, Jean-paul
The effect of chronic exposure to a low concentration (0.5 mu g l(-1)) of cadmium ions was investigated on escape behaviour of sea bass, Dicentrarchus labrax, using video analysis. Observations were also performed on the microanatomy of lateral system neuromasts. When fish were exposed for 4 h per day over 8 days to the cadmium ions, most of both types of neuromasts observed remained intact. However, some of them presented damaged sensory maculae. Whereas before cadmium exposure, fish responded positively to nearly all the lateral system stimulations, after exposure they decreased by about 10% their positive responses to Stimulations. From the 15th day after the beginning of cadmium exposure, neuromasts presented progressively less damage, cadmium accumulation in gills and scales decreased significantly and fish escape behaviour had recovered. This study presents a new concept in ecotoxicology: using behavioural change to reveal the effects of pollution levels, scarcely detectable by currently used techniques (physiological responses). (C) 2007 Elsevier Ltd. All rights reserved.
显示更多 [+] 显示较少 [-]What, where, and when: Spatial-temporal distribution of macro-litter on the seafloor of the western and central Mediterranean sea 全文
2024
Cau, Alessandro | Sbrana, Alice | Franceschini, Simone | Fiorentino, Fabio | Follesa, Maria Cristina | Galgani, Francois | Garofalo, Germana | Gerigny, Olivia | Profeta, Adriana | Rinelli, Paola | Sbrana, Mario | Russo, Tommaso
The progressive increase of marine macro-litter on the bottom of the Mediterranean Sea is an urgent problem that needs accurate information and guidance to identify those areas most at risk of accumulation. In the absence of dedicated monitoring programs, an important source of opportunistic data is fishery-independent monitoring campaigns of demersal resources. These data have long been used but not yet extensively. In this paper, MEDiterranean International Trawl Survey (MEDITS) data was supplemented with 18 layers of information related to major environmental (e.g. depth, sea water and wind velocity, sea waves) and anthropogenic (e.g. river inputs, shipping lanes, urban areas and ports, fishing effort) forcings that influence seafloor macro-litter distribution. The Random Forest (RF), a machine learning approach, was applied to: i) model the distribution of several litter categories at a high spatial resolution (i.e. 1 km2); ii) identify major accumulation hot spots and their temporal trends. Results indicate that RF is a very effective approach to model the distribution of marine macro-litter and provides a consistent picture of the heterogeneous distribution of different macro-litter categories. The most critical situation in the study area was observed in the north-eastern part of the western basin. In addition, the combined analysis of weight and density data identified a tendency for lighter items to accumulate in areas (such as the northern part of the Tyrrhenian Sea) with more stagnant currents. This approach, based on georeferenced information widely available in public databases, seems a natural candidate to be applied in other basins as a support and complement tool to field monitoring activities and strategies for protection and remediation of the most impacted areas.
显示更多 [+] 显示较少 [-]Molecular fingerprint of gilthead seabream physiology in response to pollutant mixtures in the wild 全文
2024
Beauvieux, Anaïs | Fromentin, Jean-marc | Romero, Diego | Couffin, Nathan | Brown, Adrien | Metral, Luisa | Bourjea, Jerome | Bertile, Fabrice | Schull, Quentin
The increase in trace element concentrations in the aquatic environment due to anthropogenic activities, urges the need for their monitoring and potential toxicity, persistence, bioaccumulation, and biomagnification at different trophic levels. Gilthead seabream is a species of commercial importance in the Mediterranean Sea, both for the aquaculture and fisheries sectors, however very little is known about their trace element contamination accumulation and the resulting effect on their health status. In the present study, 135 juveniles were collected from seven coastal lagoons known to be essential nursery areas for this species. We measured seventeen different inorganic contaminants at the individual level in fish muscle (namely Al, As, Be, Bi, Cd, Cr, Cu, Hg, Li, Ni, Pb, Rb, Sb, Sr, Ti, Tl and Zn). Our results revealed the accumulation of multiple trace elements in individuals and distinct contamination signatures between lagoons which might lead to contrasted quality as nurseries for juveniles of numerous ecologically and economically relevant fish species in addition to seabreams. We further evaluated the potential adverse effect of these complex contamination mixtures on the liver (the main organ implicated in the metabolism of xenobiotics) and red muscle (a highly metabolic organ) using a proteomic approach. Alterations in cellular organization pathways and protein transport were detected in both tissues (albeit they were not similarly regulated). Chromosome organization and telomere maintenance in the liver appeared to be affected by contaminant mixture which could increase mortality, age-related disease risk and shorter lifetime expectancy for these juveniles. Red muscle proteome also demonstrated an upregulation of pathways involved in metabolism in response to contamination which raises the issue of potential energy allocation trade-offs between the organisms’ main functions such as reproduction and growth. This study provides new insights into the cellular and molecular responses of seabreams to environmental pollution and proposed biomarkers of health effects of trace elements that could serve as a starting point for larger-scale biomonitoring programs.
显示更多 [+] 显示较少 [-]