细化搜索
结果 1-10 的 101
Spatio-temporal changes of road traffic noise pollution at ecoregional scale
2021
Iglesias-Merchan, Carlos | Laborda-Somolinos, Rafael | González-Ávila, Sergio | Elena-Rosselló, Ramón
Noise pollution is a pervasive factor that increasingly threatens natural resources and human health worldwide. In particular, large-scale changes in road networks have driven shifts in the acoustic environment of rural landscapes during the past few decades. Using sampling plots from the Spanish Landscape Monitoring System (SISPARES), 16 km² each, we modelled the spatio-temporal changes in road traffic noise pollution in Ecoregion 1 of Spain (approximately 66,000 km²). We selected a study period that was characterised by significant changes in the size of the road network and the vehicle fleet (i.e. between 1995 and 2014) and used standard and validated acoustic computation methods for environmental noise modelling (i.e. European Directive, 2002/49/EC) within sampling plots. We then applied a multiple linear regression to expand noise modelling throughout the whole of Ecoregion 1. Our results showed that the noise level increased by 1.7 dB(A) in average per decade in approximately 65% of the territory, decreased by 1.3 dB(A) per decade in about 33%, and remained unchanged in 2%. This suggests that road traffic noise pollution levels may not grow homogeneously in large geographical areas, maybe due to the concentration of large fast traffic flows on modern motorways connecting towns. Our research exemplifies how landscape monitoring systems such as cost-effective approaches may play an important role when assessing spatio-temporal patterns and the impact of anthropogenic noise pollution at large geographical scales, and even more so in a global context of constricted resources and limited availability of historical data on traffic and environmental noise monitoring.
显示更多 [+] 显示较少 [-]Experimental and numerical study on underwater noise radiation from an underwater tunnel
2020
Song, Xiaodong | Zhang, Xuguang | Xiong, Wen | Guo, Zhiming | Wang, Bao
The hydro-acoustic noise radiating from underwater tunnels during vehicle passage may be harmful to aquatic fauna, and this is a particular concern for endangered species. Therefore, the effects of underwater noise radiation and propagation on aquatic biodiversity must be investigated. In this study, the dynamic response of the sediment and tunnel structure in the Yangtze River in China was explored by conducting a field test, and the associated noise radiation from the tunnel was recorded and investigated. A three-dimensional numerical model was then developed to simulate the vibration of the tunnel-sediment coupling system induced by random traffic-flow models. Next, a modal acoustic transfer vector-based method was used to predict underwater noise radiation by use of a three-dimensional finite-element acoustic model. Finally, the accuracy of the simulated results was verified by comparison with measurements. The results showed that the noise radiation induced by passing vehicles was approximately 14 dB greater than the background noise, with a main frequency range of 12–25 Hz. The random traffic-flow model had obvious influence of the simulated noise level above 20 Hz. Vehicle-induced underwater noise may thus have a direct effect on fish species that can perceive low-frequency sound pressure. The proposed method can be used for further investigation of methods to reduce the effect of underwater noise on aquatic fauna, especially endangered species.
显示更多 [+] 显示较少 [-]Underwater noise level predictions of ammunition explosions in the shallow area of Lithuanian Baltic Sea
2019
Bagočius, Donatas | Narščius, Aleksas
Among the noisiest man-made activities in the seas, emitting very high acoustic energy are the underwater explosions of various objects and ship shock trials. Sound energy emitted by high explosives can be predicted or measured at sea. Sometimes, it can be convenient to apply empirical formulas and scaling laws to approximate the energy of underwater explosions. In addition, at some instances the determination of the spectral properties of the explosions is useful, i.e. when possible animal exposure to impulsive noise has to be evaluated. This paper presents an example of an application of freely available scaling laws and equations for prediction of noise levels of underwater explosions of historical ordnance in the shallow sea environments.Main findings of the study: An available scaling laws applied to model underwater explosion properties; spatial extent of explosion mapped; arising issues of modelling of underwater explosions in the shallow marine areas discussed.
显示更多 [+] 显示较少 [-]Analysis of the relationships between environmental noise and urban morphology
2018
Han, Xiaopeng | Huang, Xin | Liang, Hong | Ma, Song | Gong, Jianya
Understanding the effects of urban morphology on urban environmental noise (UEN) at a regional scale is crucial for creating a pleasant urban acoustic environment. This study seeks to investigate how the urban morphology influences the UEN in the Shenzhen metropolitan region of China, by employing remote sensing and geographic information data. The UEN in this study consists of not only regional environmental noise (RN), but also traffic noise (TN). The experimental results reveal the following findings: 1) RN is positively correlated with the nighttime light intensity (NTL) and land surface temperature (LST) (p < 0.05). More interestingly, landscape composition and configuration can also significantly affect RN. For instance, urban vegetation can mitigate the RN (r = −0.411, p < 0.01). There is a reduced RN effect when fewer buildings exist in an urban landscape, in terms of the positive relationship between building density and RN (r = 0.188, p < 0.01). Given the same percentage of building area, buildings are more effective at reducing noise when they are distributed across the urban scenes, rather than being spatially concentrated (r = −0.205, p < 0.01). 2) TN positively relates to large (r = 0.520, p < 0.01) and small–medium (r = 0.508, p < 0.01) vehicle flow. In addition, vegetation along or near roads can alleviate the TN effect (r = −0.342, p < 0.01). TN can also become more severe in urban landscapes where there is higher road density (r = 0.307, p < 0.01). 3) Concerning the urban functional zones, traffic land is the greatest contributor to urban RN, followed by mixed residential and commercial land. The findings revealed by this research will indicate how to mitigate UEN.
显示更多 [+] 显示较少 [-]Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving
2016
Underwater sound generated by pile driving during construction of offshore wind farms is a major concern in many countries. This paper reports on the acoustic stress responses in young European sea bass Dicentrarchus labrax (68 and 115 days old), based on four in situ experiments as close as 45 m from a pile driving activity. As a primary stress response, whole-body cortisol seemed to be too sensitive to ‘handling’ bias. On the other hand, measured secondary stress responses to pile driving showed significant reductions in oxygen consumption rate and low whole-body lactate concentrations. Furthermore, repeated exposure to impulsive sound significantly affected both primary and secondary stress responses. Under laboratory conditions, no tertiary stress responses (no changes in specific growth rate or Fulton's condition factor) were noted in young sea bass 30 days after the treatment. Still, the demonstrated acute stress responses and potentially repeated exposure to impulsive sound in the field will inevitably lead to less fit fish in the wild.
显示更多 [+] 显示较少 [-]When ambient noise impairs parent-offspring communication
2016
Lucass, Carsten | Eens, Marcel | Müller, Wendt
Ambient noise has increased in extent, duration and intensity with significant implications for species’ lives. Birds especially, because they heavily rely on vocal communication, are highly sensitive towards noise pollution. Noise can impair the quality of a territory or hamper the transmission of vocal signals such as song. The latter has significant fitness consequences as it may erode partner preferences in the context of mate choice. Additional fitness costs may arise if noise masks communication between soliciting offspring and providing parents during the period of parental care. Here, we experimentally manipulated the acoustic environment of blue tit (Cyanistes caeruleus) families within their nest boxes with playbacks of previously recorded highway noise and investigated the consequences on parent-offspring communication. We hypothesized that noise interferes with the acoustic cues of parental arrival and vocal components of offspring begging. As such we expected an increase in the frequency of missed detections, when nestlings fail to respond to the returning parent, and a decrease in parental provisioning rates. Parents significantly reduced their rate of provisioning in noisy conditions compared to a control treatment. This reduction is likely to be the consequence of a parental misinterpretation of the offspring hunger level, as we found that nestlings fail to respond to the returning parent more frequently in the presence of noise. Noise also potentially masks vocal begging components, again contributing to parental underestimation of offspring requirements. Either way, it appears that noise impaired parent-offspring communication is likely to reduce reproductive success.
显示更多 [+] 显示较少 [-]Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea
2019
Sertlek, Hüseyin Özkan | Slabbekoorn, Hans | Cate, Carel ten | Ainslie, Michael A.
Effective measures for protecting and preserving the marine environment require an understanding of the potential impact of anthropogenic sound on marine life. A crucial component is a proper assessment of the anthropogenic soundscape: which sounds are present where, when and how strong? We provide an extensive case study modelling the spatial, temporal and spectral distribution of sound radiated by several anthropogenic sources (ships, seismic airguns, explosives) and a naturally occurring one (wind) in the Dutch North Sea. We present the results as a series of sound maps covering the whole of the Dutch North Sea, showing the spatial and temporal distribution of the energy from these sources. Averaged over a two year period, shipping is responsible for the largest amount of acoustic energy (∼1800 J), followed by seismic surveys (∼300 J), explosions (∼20 J) and wind (∼20 J) in the frequency band between 100 Hz and 100 kHz. Our study shows that anthropogenic sources are responsible for 100 times more acoustic energy (averaged over 2 years) in the Dutch North Sea than naturally occurring sound from wind. The potential impact of these sounds on aquatic animals depends not only on these temporally averaged and spatially integrated broadband energies, but also on the source-specific spatial, spectral and temporal variation. Shipping is dominant in the southern part and along the coast in the north, throughout the years and across the spectrum. Seismic surveys are relatively local and spatially and temporally dependent on exploration activities in any particular year, and spectrally shifted to low frequencies relative to the other sources. Explosions in the southern part contribute wide-extent high energy bursts across the spectrum. Relating modelled sound fields to the temporal and spatial distribution of animal species may provide a powerful tool for understanding the potential impact of anthropogenic sound on marine life.
显示更多 [+] 显示较少 [-]Anthropogenic noise disrupts use of vocal information about predation risk
2016
Kern, Julie M. | Radford, Andrew N.
Anthropogenic noise is rapidly becoming a universal environmental feature. While the impacts of such additional noise on avian sexual signals are well documented, our understanding of its effect in other terrestrial taxa, on other vocalisations, and on receivers is more limited. Little is known, for example, about the influence of anthropogenic noise on responses to vocalisations relating to predation risk, despite the potential fitness consequences. We use playback experiments to investigate the impact of traffic noise on the responses of foraging dwarf mongooses (Helogale parvula) to surveillance calls produced by sentinels, individuals scanning for danger from a raised position whose presence usually results in reduced vigilance by foragers. Foragers exhibited a lessened response to surveillance calls in traffic-noise compared to ambient-sound playback, increasing personal vigilance. A second playback experiment, using noise playbacks without surveillance calls, suggests that the increased vigilance could arise in part from the direct influence of additional noise as there was an increase in response to traffic-noise playback alone. Acoustic masking could also play a role. Foragers maintained the ability to distinguish between sentinels of different dominance class, increasing personal vigilance when presented with subordinate surveillance calls compared to calls of a dominant groupmate in both noise treatments, suggesting complete masking was not occurring. However, an acoustic-transmission experiment showed that while surveillance calls were potentially audible during approaching traffic noise, they were probably inaudible during peak traffic intensity noise. While recent work has demonstrated detrimental effects of anthropogenic noise on defensive responses to actual predatory attacks, which are relatively rare, our results provide evidence of a potentially more widespread influence since animals should constantly assess background risk to optimise the foraging–vigilance trade-off.
显示更多 [+] 显示较少 [-]Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma
2022
Solé, Marta | De Vreese, Steffen | Fortuño, José-Manuel | van der Schaar, Mike | Sánchez, Antonio M. | André, Michel
The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 μPa² and 167 dB re 1 μPa², respectively). However, sound pressure levels's lower than 163 dB re 1 μPa² were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.
显示更多 [+] 显示较少 [-]Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas
2021
Aimon, Cassandre | Simpson, Stephen D. | Hazelwood, Richard A. | Bruintjes, Rick | Urbina, Mauricio A.
Acoustic pollution in aquatic environments has increased with adverse effects on many aquatic organisms. However, little work has been done considering the effects of the vibratory component of acoustic stimuli, which can be transmitted in the substrate and propagated into the aquatic medium. Benthic marine organisms, including many invertebrates, are capable of sensing seabed vibration, yet the responses they trigger on organism have received little attention. This study investigates the impact of underwater vibration on the physiology and behaviour of a ubiquitous inhabitant of coastal areas of the northern hemisphere, the shore crab Carcinus maenas. We developed a novel vibratory apparatus with geophones supported on a softly sprung frame to induce a seabed vibration of 20 Hz frequency, as observed during dredging, piling and other anthropogenic activities. The geophone internal mass caused the frame to vibrate in a controlled manner. Our results show that transition from ambient to anthropogenic vibrations induced an increase in activity and antennae beats in shore crabs, indicating perception of the vibratory stimulus and a higher stress level. There was also a trend on sex-specific responses to anthropogenic vibration, with males showing a higher activity level than females. However, no effect of anthropogenic vibrations was found upon oxygen consumption. These results show that anthropogenic underwater vibration induces behavioural responses in Carcinus maenas. This highlights the importance of evaluating man-made vibratory activities on coastal invertebrates and the necessity of evaluating anthropogenic effects on both sexes.
显示更多 [+] 显示较少 [-]