细化搜索
结果 1-3 的 3
Exploring the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe
2020
Chen, Jin | Guo, Yuqing | Li, Fansheng | Zheng, Yaxin | Xu, Daolong | Liu, Haijing | Liu, Xinyan | Wang, Xinyu | Bao, Yuying
Volcanic eruptions are important components of natural disturbances that provide a model to explore the effects of volcanic eruption disturbances on soil microorganisms. Despite widespread research, to the best of our knowledge, no studies of volcanic eruption disturbances have investigated the effects on soil microbial communities in the montane meadow steppe. To address this gap, we meticulously investigated the characteristics of the soil microbial communities from the volcano and steppe sites using Illumina MiSeq high-throughput sequencing. Hierarchical clustering analysis and principal coordinate analysis (PCoA) showed that the soil microbial communities from the volcano and steppe sites differed. The diversity and richness of the soil microbial communities from the steppe sites were significantly higher than at the volcano sites (P < 0.05), and the soil microbial communities in the steppe sites had higher stability. The effects of volcanic eruption disturbances on the bacterial community development are greater than its effects on the fungal communities. The environmental filtering of volcanic eruptions selectively retained some special microorganisms (i.e., Conexibacter, Agaricales, and Gaiellales) with strong adaptability to the environmental disturbances, enhanced metabolic activity for sodium and calcium reabsorption, and increased relative abundances of the lichenized saprotrophs. The soil microbial communities from the volcano and steppe sites cooperate to form complex networks of species interactions, which are strongly influenced by the interaction of the soil and vegetation factors. Our findings provide new information on the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe.
显示更多 [+] 显示较少 [-]Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils
2011
Rieder, Stephan R. | Brunner, Ivano | Horvat, Milena | Jacobs, Anna | Frey, Beat
Accumulation of total and methyl-Hg by mushrooms and earthworms was studied in thirty-four natural forest soils strongly varying in soil physico-chemical characteristics. Tissue Hg concentrations of both receptors did hardly correlate with Hg concentrations in soil. Both total and methyl-Hg concentrations in tissues were species-specific and dependent on the ecological groups of receptor. Methyl-Hg was low accounting for less than 5 and 8% of total Hg in tissues of mushrooms and earthworms, respectively, but with four times higher concentrations in earthworms than mushrooms. Total Hg concentrations in mushrooms averaged 0.96 mg Hg kg⁻¹ dw whereas litter decomposing mushrooms showed highest total Hg and methyl-Hg concentrations. Earthworms contained similar Hg concentrations (1.04 mg Hg kg⁻¹ dw) whereas endogeic earthworms accumulated highest amounts of Hg and methyl-Hg.
显示更多 [+] 显示较少 [-]Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate
2013
García-Delgado, C. | Jiménez-Ayuso, N. | Frutos, I. | Gárate, A. | Eymar, E.
Bioremediation of mixed metal–organic soil pollution constitutes a difficult task in different ecosystems all around the world. The aims of this work are to determine the capacity of two spent mushroom substrates (Agaricus bisporus and Pleurotus ostreatus) to immobilize Cd and Pb, to assess the effect of these metals on laccase activity, and to determine the potential of spent A. bisporus substrate to biodegrade four polycyclic aromatic hydrocarbons (PAH): fluorene, phenanthrene, anthracene, and pyrene, when those toxic heavy metals Cd and Pb are present. According to adsorption isotherms, spent P. ostreatus and A. bisporus substrates showed a high Pb and Cd adsorption capacity. Pb and Cd interactions with crude laccase enzyme extracts from spent P. ostreatus and A. bisporus substrates showed Cd and Pb enzyme inhibition; however, laccase activity of A. bisporus presented lower inhibition. Spent A. bisporus substrate polluted with PAH and Cd or Pb was able to biodegrade PAH, although both metals decrease the biodegradation rate. Spent A. bisporus substrate contained a microbiological consortium able to oxidize PAH with high ionization potential. Cd and Pb were immobilized during the bioremediation process by spent A. bisporus substrate. Consequently, spent A. bisporus substrate was adequate as a multi-polluted soil bioremediator.
显示更多 [+] 显示较少 [-]