细化搜索
结果 1-10 的 93
Accumulation of commonly used agricultural herbicides in coral reef organisms from iSimangaliso Wetland Park, South Africa
2022
Tyohemba, Raymond L. | Humphries, Marc S. | Schleyer, M. H. | Porter, Sean N.
Coral reefs are amongst the most biodiverse ecosystems on earth, but are significantly impacted by agricultural runoff. Despite herbicides being commonly detected in coastal waters, the possibility of herbicide accumulation in coral reef species has largely been overlooked. We investigate the accumulation of several herbicides in five species of coral reef invertebrates collected from ten sites along the Maputaland coast, South Africa. Multiple herbicide residues were detected in 95% of the samples, with total average concentrations across sites ranging between 25.2 ng g⁻¹ to 51.3 ng g⁻¹ dw. Acetochlor, alachlor and hexazinone were the predominant herbicides detected at all sites, with atrazine and simazine detected less frequently. Significant interactive effects were detected between sites nested in reef complex crossed with species, based on multiple and total herbicide concentrations. In general, multivariate herbicide concentrations varied significantly between species within and across most sites. Contrastingly, the concentrations of the different herbicides and that of total herbicide did not differ between conspecifics at most sites nested in their respective reef complexes. On average, highest total herbicide concentrations were measured in soft coral (Sarcophyton glaucum; 90.4 ± 60 ng g⁻¹ and Sinularia gravis; 42.7 ± 25 ng g⁻¹) and sponge (Theonela swinhoei; 39.0 ± 40 ng g⁻¹) species, while significantly lower concentrations were detected in hard corals (Echinopora hirsutissima; 10.5 ± 5.9 ng g⁻¹ and Acropora austera; 5.20 ± 4.5 ng g⁻¹) at most sites. Agricultural runoff entering the ocean via the uMfolozi-St Lucia Estuary and Maputo Bay are likely sources of herbicide contamination to coral reefs in the region. There is an urgent need to assess the long-term effects of herbicide exposure on coral reef communities.
显示更多 [+] 显示较少 [-]Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study
2020
Varol, Memet
The Sürgü Stream, located in the Euphrates River basin of Turkey, is used for drinking water source, agricultural irrigation and rainbow trout production. Therefore, water quality of the stream is of great importance. In this study, multivariate statistical techniques (MSTs) and water quality index (WQI) were applied to assess water quality of the stream affected by multiple stressors such as untreated domestic sewage, effluents from fish farms, agricultural runoff and streambank erosion. For this, 16 water quality parameters at five sites along the stream were monitored monthly during one year. Most of parameters showed significant spatial variations, indicating the influence of anthropogenic activities. All parameters except TN (total nitrogen) showed significant seasonal differences due to high seasonality in WT (water temperature) and water flow. The spatial variations in the WQI were significant (p < 0.05) and the mean WQI values ranged from 87.6 to 95.3, indicating “good” to “excellent” water quality in the stream. Cluster analysis classified five sites into three groups, that is, clean region, low polluted region and very clean region. Stepwise temporal discriminant analysis (DA) identified that pH, WT, Cl⁻, SO₄²⁻, COD (chemical oxygen demand), TSS (total suspended solids) and Ca²⁺ are the parameters responsible for variations between seasons, and stepwise spatial DA identified that DO (dissolved oxygen), EC (electrical conductivity), NH₄–N, TN (total nitrogen) and TSS are the parameters responsible for variations between the regions. Principal component analysis/factor analysis revealed that the parameters responsible for water quality variations were mainly associated with suspended solids (both natural and anthropogenic), soluble salts (natural) and nutrients and organic matter (anthropogenic).
显示更多 [+] 显示较少 [-]Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus)
2020
Fitzgerald, Jennifer A. | Trznadel, Maciej | Katsiadaki, Ioanna | Santos, Eduarda M.
Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 μg/L) and a pesticide with anti-androgenic activity (linuron; 250 μg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.
显示更多 [+] 显示较少 [-]Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems
2018
Rippner, Devin A. | Green, Peter G. | Young, Thomas M. | Parikh, Sanjai J.
With increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM). In the current study, duckweed growth inhibition was shown to be a function of aqueous Cu²⁺ concentration. Growth inhibition was greatest from aqueous CuCl₂ and, for particles, increased with decreasing CuO particle size. The dissolution of CuO NPs in ½ Hoagland's solution was measured to increase with decreasing particle size and in the presence of Suwannee river humic and fulvic acids (HA; FA). However, the current results suggest that HA, and to a lesser extent, FA, decrease the toxicity of both CuO NPs and free ionized Cu to duckweed, likely by inhibiting Cu availability through Cu-DOM complex formation. Such results are consistent with changes to Cu speciation as predicted by speciation modeling software and suggest that DOM changes Cu speciation and therefore toxicity in natural systems.
显示更多 [+] 显示较少 [-]Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France)
2010
Banas, D. | Marin, B. | Skraber, S. | Chopin, E.I.B. | Zanella, A.
Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cudiss) and total Cu (Cutot) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cutot concentrations in entering water was 53.6 μg/L whereas it never exceeded 2.4 μg/L in seepage. Cutot concentrations in basin water (>100 μg/L in 24% of the samples) exceeded LC50 values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cutot). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cudiss variability and could help predicting Cu mobilization. Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.
显示更多 [+] 显示较少 [-]Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland
2009
Moore, M.T. | Cooper, C.M. | Smith, S. Jr | Cullum, R.F. | Knight, S.S. | Locke, M.A. | Bennett, E.R.
Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field.
显示更多 [+] 显示较少 [-]Plant senescence: A mechanism for nutrient release in temperate agricultural wetlands
2007
Kröger, R. | Holland, M.M. | Moore, M.T. | Cooper, C.M.
The beneficial uptake of nutrients by wetland plants is countered to some extent by nutrient release back into the aquatic environment due to vegetative die-back. This current study examined whether Leersia oryzoides, a common wetland plant, exhibits luxury uptake of nutrients from simulated farm runoff. The study also tested whether with subsequent decomposition, these nutrients are released back into the water column. When exposed to elevated (>2 mg/L N and P) runoff, L. oryzoides assimilated significantly higher concentrations of nitrogen (p < 0.001) and phosphorus (p < 0.001) in above-ground biomass as compared to non-enriched treatments (<0.05 mg/L N and P). Subsequently, senescence of enriched above-ground biomass yielded significantly higher concentrations of phosphorus (2.19 ± 0.84 mg P/L). Using L. oryzoides as our model, this study demonstrates nitrogen and phosphorus sequestration during the growing season and release of phosphorus in the winter. Release of sequestered nutrients during plant senescence.
显示更多 [+] 显示较少 [-]Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology
2022
Ismanto, Aris | Hadibarata, Tony | Kristanti, Risky Ayu | Maslukah, Lilik | Safinatunnajah, Novia | Kusumastuti, Wulan
Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.
显示更多 [+] 显示较少 [-]Perfluoroalkyl acids (PFAAs): Distribution, trends and aquatic ecological risk assessment in surface water from Tagus River basin (Spain)
2020
Navarro, Irene | De la Torre, Adrián | Sanz, Paloma | Martínez, María de los Angeles
Rivers can receive the input of treated or untreated sewage effluents from wastewater treatment plants, urban and industrial discharges and agricultural run-off, becoming an important pathway for the transport and mobilization of pollutants to the oceans. In the present study, the occurrence of 20 PFAAs was determined in the water of Tagus River basin (Spain). PFAAs were detected in 76 out of 92 water samples collected during 5 years (2013–2018), being perfluorooctanesulfonic acid (PFOS) the predominant compound (<0.01–34 ng/L). The annual average PFOS concentrations (2.9–11 ng/L) detected in Tagus River were above the annual average environmental quality standards (AA-EQS) established in the Directive, 2013/39/EU (0.65 ng/L for inland surface waters) but below the maximum allowable concentration (MAC-EQS; 36000 ng/L). The levels of PFAAs detected in urban and industrial areas were statistically higher (p < 0.01) than those at background or remote areas. The mass flow rates amounted to <0.01–46 kg/y for PFOS and <0.01–22 kg/y for perfluorooctanoic acid (PFOA). A quantitative ecotoxicological risk assessment was conducted to evaluate the environmental potential risk related to PFAAs in the aquatic ecosystem. Risk characterization ratios (RCRwater, RCRsed and RCRoral, fish) were below 1 in all cases.
显示更多 [+] 显示较少 [-]Herbicide residues in sediments from Lake St Lucia (iSimangaliso World Heritage Site, South Africa) and its catchment areas: Occurrence and ecological risk assessment
2020
Tyohemba, Raymond Lubem | Pillay, Letitia | Humphries, Marc S.
The impact of agricultural pesticides on sensitive aquatic ecosystems is a matter of global concern. Although South Africa is the largest user of pesticides in sub-Saharan Africa, few studies have examined the toxicological threats posed by agricultural runoff, particularly to conservation areas of international importance. This study investigated the occurrence of 11 priority listed herbicides in sediments from Lake St Lucia, located on the east coast of South Africa. While characterised by exceptionally high levels of biodiversity, Lake St Lucia is affected by agricultural runoff primarily via inflow from two major rivers; the Mkhuze and Mfolozi. Sediment samples collected from Lake St Lucia and its two major fluvial inputs reveal widespread herbicide contamination of the aquatic environment. Residues were detected in the vast majority of samples analysed, with Mkhuze (27.3 ± 17 ng g⁻¹) and Mfolozi (25.6 ± 20 ng g⁻¹) sediments characterised by similar total herbicide levels, while lower concentrations were typically detected in Lake St Lucia (12.9 ± 12 ng g⁻¹). Overall, the most prominent residues detected included acetochlor (3.77 ± 1.3 ng g⁻¹), hexazinone (2.86 ± 1.4 ng g⁻¹) and metolachlor (10.1 ± 8.7 ng g⁻¹). Ecological assessment using Risk Quotients (RQs) showed that cumulative values for triazines and anilides/aniline herbicide classes presented low to medium risk for algae and aquatic invertebrate communities. Considering the biological importance of Lake St Lucia as a nursery for aquatic organisms, it is recommended that further research on the aquatic health of the system be undertaken. Additional monitoring and investigation into mitigation strategies is suggested, particularly as agricultural activities surrounding Lake St Lucia are likely to expand in the future.
显示更多 [+] 显示较少 [-]