细化搜索
结果 1-10 的 10
Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms
2019
Gong, Mengting | Yang, Guiqin | Zhuang, Li | Zeng, E. Y. (Eddy Y.)
The occurrence of microplastics (MPs) in the environment has been gaining widespread attention globally. MP-colonizing microorganisms are important links for MPs contamination in various ecosystems, but have not been well understood. To partially address this issue, the present study investigated biofilm formation by microorganisms originating from lake water on low-density polyethylene (LDPE) MPs using a cultivation approach and the surface-related effects on the MP-associated microbial communities using 16S rRNA high-throughput sequencing. With the addition of nonionic surfactants and UV-irradiation pretreatment that changed the surface properties of LDPE MPs, more microorganisms were colonized on LDPE surface. Microbial community analysis indicated that LDPE MPs were primarily colonized by the phyla Proteobacteria, Bacteroidetes and Firmicutes, and the surface roughness and hydrophobicity of MP were important factors shaping the LDPE MP-associated microbial community structure. Half of the top 20 most abundant genera colonizing on LDPE were found to be potential pathogens, e.g., plant pathogens Agrobacterium, nosocomial pathogens Chryseobacterium and fish pathogens Flavobacterium. This study demonstrated rapid bacterial colonization of LDPE MPs in lake water microcosms, the role of MPs as transfer vectors for harmful microorganisms in lake water, and provided a first glimpse into the effect of surface properties on LDPE MP-associated biofilm communities.
显示更多 [+] 显示较少 [-]Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste
2020
Przemieniecki, Sebastian W. | Kosewska, Agnieszka | Ciesielski, Sławomir | Kosewska, Olga
Recent studies have demonstrated the ability of mealworm (Tenebrio molitor) for plastic degradation. This study is focused on changes in microbiome structure depending on diets. Microbial community obtained from oat and cellulose diet formed similar group, two kinds of polyethylene formed another group, while polystyrene diet showed the highest dissimilarity. The highest relative abundance of bacteria colonizing gut was in PE-oxodegradable feeding, nevertheless all applied diets were higher in comparison to oat. Dominant phyla consisted of Proteobacteria, Bacteroides, Firmicutes and Actinobacteria, however after PS feeding frequency in Planctomycetes and Nitrospirae increased. The unique bacteria characteristic for cellulose diet belonged to Selenomonas, while Pantoea were characteristic for both polyethylene diets, Lactococcus and Elizabethkingia were unique for each plastic diet, and potential diazotropic bacteria were characteristic for polystyrene diet (Agrobacterium, Nitrosomonas, Nitrospira).Enzymatic similarity between oatmeal and cellulose diets, was shown. All three plastics diet resulted in different activity in both, digestive tract and bacteria. The enzymes with the highest activity were included phosphatases, esterases, leucine arylamidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, chitinase, α-mannosidase and α-fucosidase. The activity of digestive tract was stronger than cultured gut bacteria. In addition to known polyethylene degradation methods, larvae may degrade polyethylene with esterase, cellulose and oatmeal waste activity is related with the activity of sugar-degrading enzymes, degradation of polystyrene with anaerobic processes and diazotrophs.
显示更多 [+] 显示较少 [-]Social microbial inocula confer functional stability in a methyl tert-butyl ether extractive membrane biofilm bioreactor
2019
Purswani, Jessica | Guisado, Isabel M. | Coello-Cabezas, Julio | Gonzalez-López, Jesús | Pozo, Clementina
Methyl tert-butyl ether (MTBE) degradation technologies based on two-phase partitioning systems such as extractive membrane biofilm reactors (EMBFR) permit separation of biological and contaminant compartments, thus allowing optimization of the biological section. In this study, we set-up an EMBFR with three MTBE-degrading and cooperating strains (termed social biofilm: Agrobacterium sp. MS2, Paenibacillus etheri SH7ᵀ and Rhodococcus ruber EE6). The removal efficiency of the social-biofilm EMBFR was 80%, and functional stability was observed in the reactor, i.e. more efficient than previous studies (single-strain inoculated EMBFR, <50% removal efficiency and unstable function). Metabolite tert-butyl alcohol was not observed, and the EC₅₀ values were higher than those observed in single-strain EMBFRs. Comparative analysis of the MTBE enzymatic pathway and the social-biofilm was performed, where the mechanism of cooperation observed within the social-biofilm is likely due to enzymatic redundancy. Functional outcomes were equal to previous batch tests, hence 100% scalability was obtained. Overall, higher functional and stability outcomes are obtained with the use of the social-biofilm in an MTBE-EMBFR.
显示更多 [+] 显示较少 [-]Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation
2017
Cicatelli, Angela | Guarino, Francesco | Baldan, Enrico | Castiglione, Stefano
Copper and zinc are essential micronutrients in plants but, at high concentrations, they are toxic. Assisted phytoremediation is an emerging “green” technology that aims to improve the efficiency of tolerant species to remove metals from soils through the use of chelants or microorganisms. Rhizobacteria can promote plant growth and tolerance and also affect the mobility, bioavailability, and complexation of metals. A pot experiment was conducted to evaluate the phytoremediation effectiveness of sunflowers cultivated in a Cu- and Zn-spiked soil, in the presence or absence of bacterial consortium and/or chelants. The consortium was constituted of two Stenotrophomonas maltophilia strains and one of Agrobacterium sp. These strains were previously isolated from the rhizosphere of maize plants cultivated on a metal-polluted soil and here molecularly and biochemically characterized. Results showed that the consortium improved sunflower growth and biomass production on the spiked soils. Sunflowers accumulated large amounts of metals in their roots and leaves; however, neither the bacterial consortium nor the chelants, singularly added to pots, influenced significantly Cu and Zn plant uptake. Furthermore, the consecutive soil amendment with the EDTA and bacterial consortium determined a consistent accumulation of metals in sunflowers, and it might be an alternative strategy to limit the use of EDTA and its associated environmental risks in phytoremediation.
显示更多 [+] 显示较少 [-]The chirality of imazethapyr herbicide selectively affects the bacterial community in soybean field soil
2019
Wu, Hao | Chen, Hongshan | Jin, Chongwei | Tang, Caixian | Zhang, Yongsong
The chiral herbicide imazethapyr (IM) is frequently used to control weeds in soybean fields in northeast China. However, the impact of IM enantiomers on microbial communities in soil is still unknown. Genetic markers (16S rRNA V3-V4 regions) were used to characterize and evaluate the variation of the bacterial communities potentially effected by IM enantiomers. Globally, the bacterial community structure based on the OTU profiles in (−)-R-IM-treated soils was significantly different from those in (+)-S-IM-treated soils, and the differences were enlarged with the treatment dose increasing. Interestingly, the Rhizobiaceae family and several other beneficial bacteria, including Bradyrhizobium, Methylobacterium, and Paenibacillus, were strongly enriched in (−)-R-IM treatment compared to (+)-S-IM treatment. In contrast, the pathogenic bacteria, including Erwinia, Pseudomonas, Burkholderia, Streptomyces, and Agrobacterium, were suppressed in the presence of (−)-R-IM compared to (+)-S-IM. Furthermore, we also observed that the bacterial community structure in (−)-R-IM-treated soils was more quickly restored to its original state compared with those in (+)-S-IM-treated soils. These findings unveil a new role of chiral herbicide in the development of soil microbial ecology and provide theoretical support for the application of low-persistence, high-efficiency, and eco-friendly optical rotatory (−)-R-IM.
显示更多 [+] 显示较少 [-]Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis
2018
Habbadi, Khaoula | Meyer, Thibault | Vial, Ludovic | Gaillard, Vincent | Benkirane, Rachid | Benbouazza, Abdellatif | Kerzaon, Isabelle | Achbani, El Hassan | Lavire, Céline
Allorhizobium (Agrobacterium) vitis is a host-specific pathogenic bacterium that causes grapevine crown gall disease, affecting vine growth and production worldwide. The antibacterial activities of different aromatic plant essential oils were tested in vitro and in planta against A. vitis. Among the essential oils tested, those of Origanum compactum and Thymus vulgaris showed the most significant in vitro antibacterial activities, with a MIC of 0.156 and 0.312 mg/mL, respectively. A synergistic effect of these two essential oils (1:1) was observed and confirmed by the checkerboard test. Carvacrol (61.8%) and thymol (47.8%) are, respectively, the major compounds in the essential oils of O. compactum and T. vulgaris and they have been shown to be largely responsible for the antibacterial activities of their corresponding essential oils. Results obtained in vitro were reinforced by an in planta pathogenicity test. A mixture of O. compactum and T. vulgaris essential oils (1:1), inoculated into the injured stem of a tomato plant and a grapevine at 0.312 mg/mL as a preventive treatment, reduced both the number of plants developing gall symptoms and the size of the tumors.
显示更多 [+] 显示较少 [-]Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils
2014
Pereira, S. I. A. | Castro, P. M. L.
In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH₃, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log₁₀g⁻¹fresh weight) when compared to shoots (5.77 log₁₀g⁻¹fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l⁻¹and 1,000 mg Zn l⁻¹) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.
显示更多 [+] 显示较少 [-]Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent
2018
Sharma, Swati | Hasan, Abshar | Kumar, Naveen | Pandey, Lalit M.
A nano-biosorbent for the removal of methylene blue (MB) was prepared by encapsulating iron oxide nanoparticles (NPs) and Agrobacterium fabrum strain SLAJ731, in calcium alginate. The prepared biosorbent was optimized for the maximum adsorption capacity at pH 11, 160 rpm, and 25 °C. Adsorption kinetics was examined using pseudo-first-order, pseudo-second-order, and intra-particle diffusion (IPD) models. The kinetic data agreed to pseudo-second-order model indicating chemisorption of MB, which was also explained by FTIR analysis. The adsorption rate constant (k₂) decreased and initial adsorption rate (h, mg g⁻¹ min⁻¹) increased, with an increase in initial dye concentration. The dye adsorption process included both IPD and surface adsorption, where IPD was found to be a rate-limiting step after 60 min of adsorption. The adsorption capacity was found to be 91 mg g⁻¹ at 200 mg L⁻¹ dye concentration. Adsorption data fitted well to Freundlich isotherm; however, it did not fit to Langmuir isotherm, indicating adsorbent surfaces were not completely saturated (monolayer formed) up to the concentration of 200 mg L⁻¹ of MB. Thermodynamic studies proposed that the adsorption process was spontaneous and exothermic in nature. Biosorbent showed no significant decrease in adsorption capacity even after four consecutive cycles. The present study demonstrated dead biomass along with NPs as a potential biosorbent for the treatment of toxic industrial effluents.
显示更多 [+] 显示较少 [-]Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis
2018
Habbadi, Khaoula | Meyer, Thierry | Vial, Ludovic | Gaillard, Vincent | Benkirane, Rachid | Benbouazza, Abdellatif | Kerzaon, Isabelle | Achbani, El Hassan | Lavire, Céline | Institut national de la recherche agronomique [Maroc] (INRA Maroc) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Université Ibn Tofaïl (UIT) | project "Biological control of Agrobacterium vitis, the causal agent of Crown gall on grapevines" PRAD 14-08; regional center of the National Institute for Agricultural Research Meknes (INRA); French national programme EC2CO-Biohefect/Ecodyn//Dril/MicrobiEn (IBAD)
National audience | Allorhizobium (Agrobacterium) vitis is a host-specific pathogenic bacterium that causes grapevine crown gall disease, affecting vine growth and production worldwide. The antibacterial activities of different aromatic plant essential oils were tested in vitro and in planta against A. vitis. Among the essential oils tested, those of Origanum compactum and Thymus vulgaris showed the most significant in vitro antibacterial activities, with a MIC of 0.156 and 0.312mg/mL, respectively. A synergistic effect of these two essential oils (1:1) was observed and confirmed by the checkerboard test. Carvacrol (61.8%) and thymol (47.8%) are, respectively, the major compounds in the essential oils of O. compactum and T. vulgaris and they have been shown to be largely responsible for the antibacterial activities of their corresponding essential oils. Results obtained in vitro were reinforced by an in planta pathogenicity test. A mixture of O. compactum and T. vulgaris essential oils (1:1), inoculated into the injured stem of a tomato plant and a grapevine at 0.312mg/mL as a preventive treatment, reduced both the number of plants developing gall symptoms and the size of the tumors.
显示更多 [+] 显示较少 [-][Determination of cytokinin in needles of Norway spruce (Picea abies)]
1987
Hahn, H. (Bonn Univ. (Germany, F.R.). Botanisches Inst.) | Schwartzenberg, K. von