细化搜索
结果 1-10 的 207
Characterization of Solid Waste Incineration Fly Ashes and their Heavy Metal Leaching Behavior 全文
2023
Li, Yonglun | Chen, Weifang | Hu, Mingzhu
Two fly ashes from municipal solid waste incineration were selected to study their heavy metal leaching behavior. The main purpose of this research is to investigate the characteristics of fly ashes and compare the leaching of heavy metals in different leaching environment. pH and acid neutralization capacity analysis showed that fly ashes were highly alkaline. Fly ashes also contained a variety of heavy metals including Pb, Cu, Cr, Zn, Cd and Ni etc. Leaching studies showed that the alkalinity of fly ashes raised the pH of leaching solution from acidic to basic. Ni, Cu and Zn were strongly bound to ashes and manifested low leaching. In contrast, Cr and Cd had high mobility but their leaching was inhibited by the low solubility of carbonate Cr and Cd. Pb was highly leachable in the alkaline environment with concentration in the leaching solution reached as high as 9.74 mg/L. In addition, the presence of EDTA in the environment also increased leaching. Pb concentration was raised to 16.63 mg/L. This could be attributed to the chelating capacity of EDTA which means that the presence of organics in natural environment should be taken into consideration.
显示更多 [+] 显示较少 [-]Use of a chemical equilibrium model to understand soil chemical processes that influence soil solution and surface water alkalinity.
1988
David M.B. | Reuss J.O. | Walthall P.M.
Contribution to the evaluation of usability of surface water from the "Gornji Banat" meliorated region [Serbia, Yugoslavia] for irrigation
1998
Vidovic, M. (Zavod za zastitu zdravlja, Kikinda (Yugoslavia)) | Cupic, S. | Kilibarda, P. | Medarevic, S.
The paper summarizes the results on the quality of surface water of the Gornji Banat region (Serbia, Yugoslavia). Based on different classifications, statistic data processing was made and the conclusions on the usability of the water for irrigation are given. According to the results obtained there is an urgent need for efficient measures to improve the quality of canal water and the control the polluters.
显示更多 [+] 显示较少 [-]Evaluating the effect of CFH-12® and Phoslock® on phosphorus dynamics during anoxia and resuspension in shallow eutrophic lakes 全文
2021
Funes, A. | Álvarez-Manzaneda, I. | Arco, A del | de Vicente, J. | de Vicente, I.
Laboratory experiments with intact sediment cores from a hypertrophic very windy exposed shallow lake were conducted to assess the combined effect of anoxia and sediment resuspension on phosphorus (P) dynamics after adding different P adsorbents (CFH-12® and Phoslock®). In this study we hypothesize that the addition of geoengineering materials will increase P retention in the sediment even at the worst physic-chemical conditions such as anoxia and sediment resuspension. Both adsorbents significantly reduced the P release from the sediments after a 54 days-anoxic incubation period (CFH-12® by 85% and Phoslock® by 98%) and even after resuspension events (CFH-12® by 84% and Phoslock® by 88%), indicating that both adsorbents are suitable P inactivating agents for restoring shallow eutrophicated lakes under such circumstances. CFH-12® did not release dissolved Fe to the water column neither after the anoxic period nor after resuspension events compared to Control (no adsorbents addition). The La concentration was significantly higher in Phoslock® (3.5–5.7 μg L⁻¹) than in Control at all sampling days but it was not affected by resuspension. The high efficiency in P removal under anoxia and resuspension, the low risk of toxicity and the high maximum adsorption capacity makes CFH-12® a promising adsorbent for lake restoration. Nevertheless, further research about the influence of other factors (i.e. pH, alkalinity, interfering substances or strict anoxia) on the performance of CFH-12® is needed.
显示更多 [+] 显示较少 [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment 全文
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
显示更多 [+] 显示较少 [-]Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment 全文
2019
Ravindra, Khaiwal | Thind, Parteek Singh | Mor, Sahil | Singh, Tanbir | Mor, Suman
The major objective of the current study is to estimate the groundwater quality and identify the likely sources of contamination in Chandigarh, India. Total 80 groundwater samples were collected from different locations and at various depths in the study area. Further, physcio-chemical analysis was done to estimate pH, electrical conductivity (EC), total dissolved solids, total hardness (TH), total alkalinity (TA), Na+, K+, Cl−, SO42−, PO43− and NO3−. The groundwater samples collected from shallow water sources were observed to contain higher amount of dissolved salts. EC, TA, Cl−, TH, Na+, and K+ were found relatively higher in the shallow aquifer (<150 ft). Based on the location of pollution sources at the surface and consecutive geo-statistical distribution of physicochemical characteristics, this study suggests that non-scientific disposal of municipal solid waste,dumping of industrial waste and agricultural activities, in the nearby areas, could lead to deterioration of groundwater of shallow aquifer. These observations were also confirmed using various water quality indices and outcomes of multivariate modeling, including principal component analysis. Health risk assessment for nitrates indicated that 29 groundwater samples pose non-carcinogenic health risk for children due to dermal and oral exposure. Hence, there is a need to establish a system for regularly assessing the groundwater quality so as to minimize public health risks.
显示更多 [+] 显示较少 [-]Phosphorus (P) release risk in lake sediment evaluated by DIFS model and sediment properties: A new sediment P release risk index (SPRRI) 全文
2019
Wu, Zhihao | Wang, Shengrui | Ji, Ningning
A new sediment P release risk index (SPRRI) for “in-situ” phosphorus (P) release risk in lake sediment, is developed based on diffusive gradients in thin films (DGT) technique, DGT induced flux in sediments (DIFS) model and sediment properties. SPRRI includes three sub-indexes, which contain (1) the labile P pool size, (2) resupply constant (r) and desorption rate (Dspt rate) for P transfer and (3) the molar ratio between iron (Fe) in sequential extraction for sediment P by bicarbonate-dithionite (BD) and aluminum (Al) by NaOH (at 25 °C), i.e. BD(Fe)/Al[NaOH25] in sediment solid. The first sub-index considers P release from (i) sediment with NH₄Cl-P+BD-P pool, i.e. the loosely sorbed P (NH₄Cl-P) plus iron associated P (BD-P), or (ii) sediment with NH₄Cl-P pool, respectively. The second and third sub-indexes reflect kinetic P desorption and resupply ability of solid phase, and the effect of P sequestration by Al hydroxide on P release, in turn. The inner relationship between SPRRI and sub-indexes, and their effects on P release risk are elucidated. SPRRI can be used to evaluate sediment P reactivity by five release risk ranks. For Lake Dianchi (China), P transfer dynamics, labile P pool, resupply ability and Al-P in sediment, and “external P-loading” control and affect P release risk in different regions, which is reflected by the spatial distribution map for SPRRI. The present SPRRI can be applied for lakes with (1) pH range varying from moderate acidity to weak alkalinity in waterbody and (2) NH₄Cl-P or NH₄Cl-P+BD-P pool in sediment solid.
显示更多 [+] 显示较少 [-]The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways 全文
2018
Lyu, Tao | He, Keli | Dong, Renjie | Wu, Shubiao
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2–8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d−1 in the CWs. Simultaneously, up to 91% of NH4+-N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ15N-NH4+ in the effluent (47–58‰) strongly supports the occurrence of microbial transformations for NH4+-N removal. However, relatively lower enrichment factors of δ15N-NH4+ (−1.8‰ to −11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs.
显示更多 [+] 显示较少 [-]Factors influencing the fate of antibiotic resistance genes during thermochemical pretreatment and anaerobic digestion of pharmaceutical waste sludge 全文
2018
Tong, Juan | Lu, Xueting | Zhang, Junya | Angelidaki, I. | Wei, Yuansong
The prevalence of antibiotic resistance genes (ARGs) in waste sludge, especially for the pharmaceutical waste sludge, presents great potential risks to human health. Although ARGs and factors affecting their spreading are of major importance for human health, the factors influencing the fate of ARGs during sludge treatment, especially for pharmaceutical sludge treatment are not yet well understood. In order to be able to minimize ARGs spreading, it is important to find what is influencing their spreading. Therefore, certain factors, such as the sludge characteristics, bacterial diversity and community composition, and mobile genetic elements (MGEs) during the advanced AD of pharmaceutical sludge with different pretreatments were studied, and their affinity with ARGs was elucidated by Spearman correlation analysis. Furthermore, multiple linear regression was introduced to evaluate the importance of the various factors. Results showed that 59.7%–88.3% of the variations in individual ARGs and total ARGs can be explained by the corresponding factors. Bacterial diversity rather than specific bacterial community composition affected the fate of ARGs, whereas alkalinity was the most important factor on ARGs among all sludge characteristics investigated in this study. Besides, 66.4% of variation of total ARGs was driven by the changes of MGEs. Multiple linear regression models also reveal the collective effect of these factors on ARGs, and the contributions of each factor impact on ARGs. This study provides more comprehension about the factors impact on the fate of ARGs during pharmaceutical sludge treatment, and offers an approach to evaluate the importance of each factor, which method could be introduced for evaluation of factors influencing ARGs during other types of sludge or wastewater treatment.
显示更多 [+] 显示较少 [-]Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters 全文
2016
Li, Ling | Sillanpää, Markus | Risto, Maarit
With the increasing usage of titanium dioxide nanoparticles (NPs), their release into the environment makes it important to understand their transport, fate and behaviour in natural waters. In this study, aggregation and deposition of TiO2 NPs were studied during a 3-h period by using a dynamic light scattering instrument and a UV–vis spectrophotometer, respectively. TiO2 NPs were spiked in 34 lake and 5 brackish water samples at an initial concentration of 10 mg L−1. Depending on the physicochemical properties of the natural waters, TiO2 NPs exhibited different colloidal stability. In brackish waters with high salinity, TiO2 NPs were prone to aggregate and settled rapidly. Whereas under conditions of humic and humus-poor lake waters, TiO2 NPs were suspended in water column for a longer time without remarkable change in particle size and concentration. Deposition likely occurred in nutrient-rich lakes which had high amount of nitrogen and phosphorus accompanied by high values of conductivity, alkalinity, pH and turbidity. Linear regression analysis revealed the statistically significant relationships (p ≤ 0.008) between the TiO2 NPs stability and these water properties. Our study makes a better understanding of the water properties that control the aggregation and deposition of TiO2 NPs in complex natural waters.
显示更多 [+] 显示较少 [-]