细化搜索
结果 1-3 的 3
A natural post-emergence herbicide based on essential oil encapsulation by cross-linked biopolymers: characterization and herbicidal activity
2020
Taban, Azin | Saharkhiz, Mohammad Jamal | Naderi, Ruhollah
This work describes efforts to encapsulate savory (Satureja hortensis L.) essential oil (EO) with different natural polymers (i.e., Arabic gum/gelatin (AGG), apple pectin (AP), gelatin (G)) and, as a separate set of experiments, with bio cross-linkers (i.e., citric acid and transglutaminase enzyme). The phytotoxic activity of encapsulated savory EO on tomato (Lycopersicon esculentum Mill.) and amaranth weed (Amaranthus retroflexus L.) was investigated. The micro-capsules were evaluated in terms of size, polydispersity, stability, encapsulation efficiency, morphology, and release properties. The Korsmeyer–Peppas model operated when EO was being released from the micro-capsules. Carvacrol (52.5%) and γ-terpinene (30.2%) comprised the main constituents of the savory EO. Based on the results, encapsulating the EO with cross-linked biopolymers increased the stability and herbicidal activity of EO, as compared to simple EO emulsions. Maximum toxicity injuries (MTI) were caused by encapsulations of apple pectin, cross-linked with APe enzyme (15 ml/L) on both plant species. MTI were observed 2 days after using the micro-encapsulated herbicides (MCHs). However, the injury caused by MCHs on tomato was not significant. The lowest values of fresh weight (2.80 g), chlorophyll a (0.194 mg/g Fw), and total chlorophyll content (0.219 mg/g Fw) of amaranth occurred in response to APe (15 ml/L). Moreover, using AP(e) (10 ml/L) caused the lowest values of starch (0.444 mg/g Fw) and flavonoid contents (4.18 mg Cat/g Fw) in amaranth which measured as 59% and 90% reductions, respectively, in comparison with the control. The highest values of MDA (0.0109 nmol/g Fw) and H₂O₂ (0.0432 μmol/g Fw) were observed in amaranth plants treated with AP(e) (10 ml/L). In summary, cross-linked apple pectin can perform well in slow release delivery systems of agrochemicals. It can be recommended for use in the production of commercial, EO-based natural herbicides.
显示更多 [+] 显示较少 [-]Commercial glyphosate-based herbicides effects on springtails (Collembola) differ from those of their respective active ingredients and vary with soil organic matter content
2020
Maderthaner, Michael | Weber, Maureen | Takács, Eszter | Mörtl, Mária | Leisch, Friedrich | Römbke, Jörg | Querner, Pascal | Walcher, Ronnie | Gruber, Edith | Szekacs, Andras | Zaller, Johann G.
Glyphosate-based herbicides (GBH) are currently the most widely used agrochemicals for weed control. Environmental risk assessments (ERA) on nontarget organisms mostly consider the active ingredients (AIs) of these herbicides, while much less is known on effects of commercial GBH formulations that are actually applied in the field. Moreover, it is largely unknown to what extent different soil characteristics alter potential side effects of herbicides. We conducted a greenhouse experiment growing a model weed population of Amaranthus retroflexus in arable field soil with either 3.0 or 4.1% soil organic matter (SOM) content and treated these weeds either with GBHs (Roundup LB Plus, Touchdown Quattro, Roundup PowerFlex) or their respective AIs (isopropylammonium, diammonium or potassium salts of glyphosate) at recommended dosages. Control pots were mechanically weeded. Nontarget effects were assessed on the surface activity of the springtail species Sminthurinus niger (pitfall trapping) and litter decomposition in the soil (teabag approach). Both GBHs and AIs increased the surface activity of springtails compared to control pots; springtail activity was higher under GBHs than under corresponding AIs. Stimulation of springtail activity was much higher in soil with higher SOM content than with low SOM content (significant treatment x SOM interaction). Litter decomposition was unaffected by GBHs, AIs or SOM levels. We suggest that ERAs for pesticides should be performed with actually applied herbicides rather than only on AIs and should also consider influences of different soil properties.
显示更多 [+] 显示较少 [-]Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L
2019
Liu, Na | Dai, Jiulan | Tian, Haoqi | He, Huan | Zhu, Yuen
Phytoremediation combined with amendments and stabilization technologies are two crucial methods to deal with soil contaminated with heavy metals. Copper (Cu) contamination in soil near Cu mines poses a serious threat to ecosystems and human health. This study investigated the effect of ethylenediaminetetraacetic acid (EDTA) and biochar (BC) on the accumulation and subcellular distribution of Cu in Amaranthus retroflexus L. to demonstrate the remediation mechanism of EDTA and BC at the cellular level. The role of calcium (Ca) in response to Cu stress in A. retroflexus was also elucidated. We designed a pot experiment with a randomized block of four Cu levels (0, 100, 200, 400 mg kg⁻¹) and three treatments (control, amendment with EDTA, and amendment with BC). The subcellular components were divided into three parts (cell walls, organelles, and soluble fraction) by differential centrifugation. The results showed that EDTA amendment significantly increased (p < 0.05) the concentrations of Cu in root cell walls and all subcellular components of stems and leaves (cell walls, organelles, and the soluble fraction). EDTA amendment significantly increased (p < 0.05) the proportion of exchangeable fraction and carbonate fraction in the soil. While BC amendment significantly decreased (p < 0.05) the concentrations of Cu in root cell walls and the root soluble fraction, it had no significant effects on Cu concentrations in the subcellular components of stems and leaves. The results revealed that EDTA mainly promoted the transfer of Cu to aboveground parts and accumulation in subcellular components of stems and leaves, while BC mainly limited Cu accumulation in root cell walls and the root soluble fraction. Ca concentrations in cell walls of roots, stems, and leaves increased as the Cu stress increased in all treatment groups, indicating that Ca plays an important role in relieving Cu toxicity in Amaranthus retroflexus L.
显示更多 [+] 显示较少 [-]