细化搜索
结果 1-10 的 103
Increasing salinization of freshwater limits invasiveness of a live-bearing fish: Insights from behavioral and life-history traits 全文
2022
Zhou, Linjun | Liu, Kai | Zhao, Yu | Cui, Ling | Dong, Chenglong | Wang, Zaizhao
Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.
显示更多 [+] 显示较少 [-]Metabolic, immunologic, and histopathologic responses on premetamorphic American bullfrog (Lithobates catesbeianus) following exposure to lithium and selenium 全文
2021
Pinto-Vidal, Felipe Augusto | Carvalho, Cleoni dos Santos | Abdalla, Fábio Camargo | Ceschi-Bertoli, Letícia | Moraes Utsunomiya, Heidi Samantha | Henrique da Silva, Renan | Salla, Raquel Fernanda | Jones-Costa, Monica
The presence of chemicals and the destruction of freshwater habitats have been addressed as one of the reasons for the decline in the amphibians’ populations worldwide. Considering the threat that these animals have been suffering in tropical regions, the present study tested if the Brazilian legislation, concerning the permissive levels of lithium and selenium in water bodies and effluents, warrants the protection of aquatic life. To do so, we assessed the metabolic, immunologic, and histopathologic alterations in liver samples of American bullfrog (Lithobates catesbeianus), at the premetamorphic stage, through biomarkers indicative of general energetic status, i.e., glucose, lipid, and protein metabolism using biochemical and histochemical approaches. The immunologic responses were assessed by the quantification of melanomacrophage centres (MMCs); the histopathologic evaluation of the liver sections was also performed. The assay was carried out over 21 days with two periods of sampling (after 7 and 21 days) to assess the effects of exposure over time. The animals were exposed to the considered safe levels of lithium (2.5 mg L⁻¹) and selenium (10 μg L⁻¹), both, isolated and mixed. The exposed animals showed alterations in glucose and lipid metabolism throughout the experiment. The intense presence of MMCs and histopathological responses are compatible with hepatotoxicity. The toxicity expressed by the employed animal model indicates that the Brazilian environmental legislation for the protection of aquatic life needs to be updated. With this study, we intend to provide data for better environmental policies and bring attention to sublethal effects triggered by the presence of contaminants in the aquatic environment.
显示更多 [+] 显示较少 [-]Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans 全文
2020
Yang, Yunhan | Shao, Huimin | Wu, Qiuli | Wang, Dayong
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
显示更多 [+] 显示较少 [-]Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways 全文
2020
Zhang, Xing | Gu, Wenyi | Ma, Zhongliang | Liu, Yun | Ru, Hongbo | Zhou, Jizhi | Zang, Yi | Xu, Zhiping | Qian, Guangren
Environmentally persistent free radicals (EPFRs) are easily generated in the combustion processes of municipal solid waste (MSW) and can cause adverse effects on human health. This study focuses on understanding the toxicity of EPFR particles (ZnO/MCB containing EPFRs) to human bronchial epithelial cell lines BEAS-2B and 16HBE, murine macrophages Raw264.7, and the lung of BALB/c mice after a short exposure (7 days). Exposure of BEAS-2B, 16HBE, and Raw264.7 cells to ZnO/MCB particles significantly increased the reactive oxygen species (ROS) production and perturbed levels of intracellular redox conditions (decreased the intracellular GSH level and the activity of cytosolic SOD, and stimulated oxidative stress related proteins such as HO-1 and Nrf2). EPFR particles decreased the mitochondrial membrane potential (MMP) and induced cell apoptosis, including the activation of Caspase-3, Bax, and Bcl-2 apoptotic signalling pathways. A signature inflammatory condition was observed in both cell models and the mouse model for lung lesions. Our data suggest that EPFRs in particles have greater toxicity to lung cells and tissues that are potential health hazards to human lung.
显示更多 [+] 显示较少 [-]Effects of endocrine disrupting chemicals in pigs 全文
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
显示更多 [+] 显示较少 [-]Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5 全文
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
显示更多 [+] 显示较少 [-]Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro 全文
2019
Zhou, Tianyu | Hu, Yan | Wang, Yunxia | Sun, Chao | Zhong, Yijue | Liao, Jiping | Wang, Guangfa
Fine particulate matter (PM₂.₅) is an essential risk factor of chronic obstructive pulmonary disease (COPD). Recent studies showed weak association between PM₂.₅ and COPD incidence, but smokers who exposed to higher PM₂.₅ concentration had more opportunity to gain COPD. Cigarette smoking is the most important risk factor of COPD. Thus, we hypothesized: the role of PM₂.₅ played on cigarette-inflamed airways was more significant than normal airways. The study firstly established an animal model of C57BL/6J mice with cigarette smoke exposure and PM₂.₅ orotracheal administration. After calculating pathological scores, mean linear intercept and mean alveolar area, we found PM₂.₅ aggravated pathological injury of cigarette-inflamed lungs, but the injury on normal lungs was not significant. Meanwhile, inflammatory factors as T-bet, IFN-γ and IL-1α were tested using qRT-PCR and ELISA. The results showed PM₂.₅ aggravated inflammation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. The most important pathogenesis of COPD is abnormal apoptosis in airway epithelium, due to oxidative stress following long-term exposure to cigarette smoke. Then, apoptotic responses were detected in lungs. TUNEL analysis demonstrated that PM₂.₅ promoted DNA fragmentation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. Western-blot and immunohistochemistry showed caspase activated significantly in PM₂.₅-cigarette smoke exposed lungs and activated caspase 3 located mainly on bronchial epithelium. Next, human bronchial epithelial cells were cultured treated with cigarette smoke solution (CSS) with or without PM₂.₅. Z-VAD-FMK, a pan-caspase inhibitor, was used to suppress the activation of caspases. After analyzing cell viability, DNA fragmentation, mitochondrial activities and caspase activities, the results clarified that PM₂.₅ aggravated apoptosis in cigarette-inflamed bronchial epithelial cells and the responses could be suppressed by Z-VAD-FMK. Our results gave a new idea about the mechanism of PM₂.₅ on COPD and inferred cigarette-inflamed airways were more vulnerable to PM₂.₅ than normal airways.
显示更多 [+] 显示较少 [-]A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water 全文
2019
Xu, Xiaohui | Zhang, Xiao | Carrillo, Genny | Zhong, Yan | Kan, Haidong | Zhang, Bangning
Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated.In this study, we assessed the carcinogenicity of 1,173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA).We linked the HF chemical data with the agent classification data from the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1,534 chemicals) to evaluate potential carcinogenicity of the chemicals.The Chemical Abstract Service Registry Numbers (CASRNs) for chemicals were used for data linkage. Among 1,173 chemicals, 1,039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals, and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic, and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.Conclusions Our evaluation suggests that exposure to some chemicals in HF fluids and wastewater may increase cancer risk, and the identified chemicals could be selected as the priority list for drinking water exposure assessment or cancer-related health studies.
显示更多 [+] 显示较少 [-]Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes 全文
2019
Chisada, Shinichi | Yoshida, Masao | Karita, Kanae
Research using various species of wild and cultured fish has identified negative effects of short-term exposure to microbeads. Although wild animals might be contaminated with microbeads and/or other pharmaceuticals, data regarding the long-term effects remain limited. To clearly elucidate the effects of microbeads, studies of long-term exposure using animal models are necessary. Our aim was to elucidate the effects of microbeads alone on the growth and fecundity of medaka following long-term exposure (12 weeks). In experiment 1, fish groups (except controls) were temporarily exposed to polyethylene microbeads (10–63 μm diameter) a low dose of 0.065 microbeads-mg/L and high dose of 0.65 microbeads-mg/L. In experiment 2, see-through medaka and fluorescent polyethylene microbeads (10–45 μm diameter) were used to estimate the retention time of ingested microbeads in the digestive tract, which was 4–9 days. The low dose of microbeads did not affect growth but did decrease the number of eggs and the hatching rate. The high dose decreased growth, the number of eggs, and hatching rate. Growth differences were recognized for the first time at 7 weeks, and differences in the number of eggs at 12 weeks. Thus, long-term tests using medaka indicated that microbeads per se exhibit growth inhibition and reproductive toxicity. These effects could be associated with nutritional factors resulting from the long retention time of microbeads in the digestive tract. We also determined the dose that affects only fecundity. This suggests that normal growth of medaka in the wild does not mean the environment is free from microbead contamination. We are thus attempting to identify new biological indexes for monitoring the status of microbead contamination using our system.
显示更多 [+] 显示较少 [-]Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma 全文
2017
Falcon-Rodriguez, Carlos Iván | De Vizcaya-Ruiz, Andrea | Rosas-Pérez, Irma Aurora | Osornio-Vargas, Álvaro Román | Segura-Medina, Patricia
Exposure to Particulate Matter (PM) could function as an adjuvant depending on the city of origin in mice allergic asthma models. Therefore, our aim was to determine whether inhalation of fine particles (PM2.5) from Mexico City could act as an adjuvant inducing allergic sensitization and/or worsening the asthmatic response in guinea pig, as a suitable model of human asthma. Experimental groups were Non-Sensitized (NS group), sensitized with Ovalbumin (OVA) plus Aluminum hydroxide (Al(OH)3) as adjuvant (S + Adj group), and sensitized (OVA) without adjuvant (S group). All the animals were exposed to Filtered Air (FA) or concentrated PM2.5 (5 h/daily/3 days), employing an aerosol concentrator system, PM2.5 composition was characterized. Lung function was evaluated by barometric plethysmography (Penh index). Inflammatory cells present in bronchoalveolar lavage were counted as well as OVA-specific IgG1 and IgE were determined by ELISA assay. Our results showed in sensitized animals without Al(OH)3, that the PM2.5 exposure (609 ± 12.73 μg/m3) acted as an adjuvant, triggering OVA-specific IgG1 and IgE concentration. Penh index increased ∼9-fold after OVA challenge in adjuvant-sensitized animals as well as in S + PM2.5 group (∼6-fold), meanwhile NS + FA and S + FA lacked response. S + Adj + PM2.5 group showed an increase significantly of eosinophils and neutrophils in bronchoalveolar lavage. PM2.5 composition was made up of inorganic elements and Polycyclic Aromatic Hydrocarbons, as well as endotoxins and β-glucan, all these components could act as adjuvant. Our study demonstrated that acute inhalation of PM2.5 acted as an adjuvant, similar to the aluminum hydroxide effect, triggering allergic asthma in a guinea pig model. Furthermore, in sensitized animals with aluminum hydroxide an enhancing influence of PM2.5 exposure was observed as specific-hyperresponsiveness to OVA challenge (quickly response) and eosinophilic and neutrophilic airway inflammation. Fine particles from Mexico City is a complex mix, which play a significant role as adjuvant in allergic asthma.
显示更多 [+] 显示较少 [-]