细化搜索
结果 1-10 的 926
Appraisal the Protective Effects of Cymbopogon Schoenanthus Extract against Reproductive Disorders and Carcinogenic Effects of Formalin in Experimental Male Rats 全文
2020
Sief, M. M. | Sherif, S. M. | Abdel-Aziz, M. H. | Sherein, S. A. | Mona, M. A. | Ramzy, S.
Formaldehyde has been documented to be naturally present in many common foods. There has been a big public concern over the use of formaldehyde in the preservation of food. Also, it is commonly used as a chemical substance, usually in the life and can interact with many bio-substance in the human body. The present study target to investigate the protective effects of Cymbopogon schoenanthus (CS) extract against the reproductive and carcinogenic effects of formaldehyde on male rats. The Albino male rats were divided into equal six groups, first group: rendered as a control group; second group: received formalin (100 mg/kg bw) and third group and forth group: were received SC extract at (50 and 100 mg) respectively; fifth group and sixth group were received formalin (100mg /kg bw) + SC extract (50mg) and formalin (100mg /kg bw)+ SC extract (100 mg) respectively. At the end of the experiment the animals were scarified and blood samples were collected for measurement all tested parameters. The results showed that the oral exposure to formaldehyde at a dose of 100 mg/kg bw resulted in significant negative effects in all tested parameters, while the CS extract at tow doses (50 and 100 mg) alone or in combination with formalin restored the negative effects to normal levels compared with the untreated group. The histopathological examination was studied on testis tissues and the histopathological pictures showed the CS extract at tow mention doses had ameliorate the adverse effects that induced by formaldehyde hazards.
显示更多 [+] 显示较少 [-]Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos 全文
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
显示更多 [+] 显示较少 [-]Impact of chronic cadmium exposure at environmental dose on escape behaviour in sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). 全文
2008
Faucher, Karine | Fichet, Denis | Miramand, Pierre | Lagardère,
peer reviewed | The effect of chronic exposure to a low concentration (0.5 microg l(-1)) of cadmium ions was investigated on escape behaviour of sea bass, Dicentrarchus labrax, using video analysis. Observations were also performed on the microanatomy of lateral system neuromasts. When fish were exposed for 4h per day over 8 days to the cadmium ions, most of both types of neuromasts observed remained intact. However, some of them presented damaged sensory maculae. Whereas before cadmium exposure, fish responded positively to nearly all the lateral system stimulations, after exposure they decreased by about 10% their positive responses to stimulations. From the 15th day after the beginning of cadmium exposure, neuromasts presented progressively less damage, cadmium accumulation in gills and scales decreased significantly and fish escape behaviour had recovered. This study presents a new concept in ecotoxicology: using behavioural change to reveal the effects of pollution levels, scarcely detectable by currently used techniques (physiological responses).
显示更多 [+] 显示较少 [-]PPARγ/LXRα axis mediated phenotypic plasticity of lung fibroblasts in silica-induced experimental silicosis 全文
2022
Qi, Yuanmeng | Zhang, Haichen | Fan, Hui | Wang, Xinyu | Zhao, Ahui | Tian, Yangyang | Yang, Guo | Li, Chao | Wei, Jingjing | Yao, Wu | Hao, Changfu
Silicosis is a disease mainly caused by pulmonary interstitial fibrosis caused by long-term inhalation of dust with excessively high content of free SiO₂. Transdifferentiation of lung fibroblasts into myofibroblasts is an important cellular basis for silicosis, but the key transcription factors (TFs) involved in this process are still unclear. In order to explore the biological regulation of transcription factor PPARγ/LXRα in silica-induced pulmonary fibrosis, this study explored the molecular mechanism of PPARγ/LXRα involved in regulating transcription factors related to SiO₂-induced lung injury at the cellular level and in animal models. ChIP-qPCR detected that PPARγ directly regulated the transcriptional activity of the LXRα gene promoter, while the PPARγ agonist RSG increased the expression of LXRα. In addition, we demonstrated in the cell model that upregulation of LXRα can inhibit silica-mediated fibroblast transdifferentiation, accompanied by an increase in the expression of SREBF1, PLTP and ABCA1. The results of LXRα silencing experiment matched those of overexpression experiment. These studies explored the role of LXRα in plasticity and phenotypic transformation between lung fibroblasts and myofibroblasts. Therefore, inhibiting or reversing the transdifferentiation of lung fibroblasts to myofibroblasts by intervening PPARγ/LXRα may provide a new therapeutic target for the treatment of silicosis.
显示更多 [+] 显示较少 [-]PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes 全文
2022
Thiankhaw, Kitti | Chattipakorn, Nipon | Chattipakorn, Siriporn C.
Particulate matter with a diameter of less than 2.5 μm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.
显示更多 [+] 显示较少 [-]Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study 全文
2020
Li, Simin | Zhu, Li | Li, Jin | Ke, Xin | Wu, Longhua | Luo, Yongming | Christie, Peter
Amendment with sewage sludge or biosolids can increase soil fertility but may also transfer biosolid-borne pollutants to the soil and the possible effects on the soil ecosystem are poorly understood, especially long-term effects. A long-term experiment was therefore established to assess the effects of repeated applications of different types of biosolids (fresh domestic, dried domestic and fresh industrial sludges) in field conditions. Nine years of sludge application led to changes in soil chemical and biological properties and generally contributed little to soil nutrient status. However, soil concentrations of potentially toxic elements (PTEs) were elevated by amendment, especially with industrial biosolids. Soil fauna are usually used to decipher the underlying effects of biosolid applications on the soil ecosystem. Here, collembolans (50.9%), nematodes (41.6%) and enchytraeid worms (7.50%) were collected and differentiated into different ecological and trophic groups and their body lengths and PTE concentrations in the body tissues were investigated. The animals showed different responses to the biosolids at population and individual levels. There were substantial changes in epigeic collembolan communities and bacterivorous nematodes increased significantly after biosolid amendment. Biosolid-borne PTEs were major factors and Redundancy (RDA) analysis indicates that collembolan communities were strongly influenced by zinc (Zn). The three groups of soil animals showed similar trends in accumulation of PTEs in the sequence cadmium (Cd) > Zn > copper (Cu), and the bioaccumulation factor (BAF) values of the PTEs were significantly higher in the industrial sludge treatment than in other two treatments with a similar trend of decreasing body length of nematodes. The results indicate that it is potentially risky to use industrial biosolids in the long term, and different species and ecological groups of collembolans and different trophic groups of nematodes should be examined when assessing soil health.
显示更多 [+] 显示较少 [-]The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA) 全文
2020
Bahmani, Ramin | Kim, DongGwan | Modareszadeh, Mahsa | Thompson, Drew | Park, Jeong Hoon | Yoo, Hye Hyun | Hwang, Seongbin
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
显示更多 [+] 显示较少 [-]Prenatal exposure to residential PM2.5 and anogenital distance in infants at birth: A birth cohort study from Shanghai, China 全文
2020
Sun, Xiaowei | Liu, Cong | Wang, Ziliang | Yang, Fen | Liang, Hong | Miao, Maohua | Yuan, Wei | Kan, Haidong
Fine particulate matter (PM₂.₅) is believed to be one of the most hazardous air pollution with a ubiquitous presence. Animal studies have reported the association between prenatal exposure to traffic pollutant (not exclusively including PM₂.₅) and reproductive development in male offspring. However, the effects of prenatal exposure to PM₂.₅ on reproductive health in children are still unknown. The present study was based on the Shanghai-Minhang Birth Cohort Study (S-MBCS). A total of 876 pregnant women and their infants were included. Infants’ anogenital distance (AGD, the distance from the anus to the genitals; AGDap [anus-penis] and AGDas [anus-scrotum] for boys, and AGDac [anus-clitoris] and AGDaf [anus-fourchette] for girls) were measured at birth. PM₂.₅ concentrations during pregnancy were estimated using satellite based modeling approach. Multiple linear regression analysis and multiple informant model were conducted to examine the associations between prenatal exposure to PM₂.₅ (pre μg/m³) and offspring’s AGDs (mm). In order to minimize the misclassification of exposure, a sensitivity analysis restricted to mothers being off work during pregnancy was performed. In multiple linear regression models, we found that prenatal exposure to PM₂.₅ during the 1ˢᵗ and 3ʳᵈ trimesters was associated with shorter AGDs. In multiple informant model, similar patterns were found, and statistically significant reductions were observed in AGDap (β=−0.278, 95%CI: -0.343∼-0.212), AGDac (β=−0.188, 95%CI: -0.247∼-0.130) and AGDaf (β= −0.163, 95%CI: -0.238∼-0.088) with PM₂.₅ exposure during the 1ˢᵗ trimester, and AGDap (β=−0.201, 95%CI: -0.247∼-0.155), AGDas (β=−0.158, 95%CI: -0.198∼-0.117), AGDac (β=−0.128, 95%CI: -0.167∼-0.089) and AGDaf (β = −0.144, 95%CI: -0.194∼-0.094) with PM₂.₅ exposure during the 3ʳᵈ trimester. The sensitivity analysis restricted to women being off work during pregnancy showed similar results. PM₂.₅ exposure during the 1ˢᵗ and 3ʳᵈ trimesters was associated with shortened AGDs in offspring at birth. Our findings provide preliminary evidence that prenatal exposure to PM₂.₅ might be associated with the reproductive development of offspring.
显示更多 [+] 显示较少 [-]Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium 全文
2020
Zhou, Chuanqi | Huang, Jung-Chen | Zheng, Lixin | He, Shengbing | Zhou, Weili
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9–74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3–100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40–87.24 μg Cr/g DW) or adults (19.41–50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7–94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1–1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
显示更多 [+] 显示较少 [-]Aquatic vascular plants – A forgotten piece of nature in microplastic research 全文
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
显示更多 [+] 显示较少 [-]