细化搜索
结果 1-10 的 126
Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives
2022
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
显示更多 [+] 显示较少 [-]Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
显示更多 [+] 显示较少 [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
显示更多 [+] 显示较少 [-]Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio)
2018
Kim, Jin | Oh, Hanseul | Ryu, Bokyeong | Kim, Ukjin | Lee, Ji-min | Jung, Cho-Rok | Kim, C-yoon | Park, Jae-Hak
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
显示更多 [+] 显示较少 [-]Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay
2017
Sajayan, Arya | Seghal Kiran, G. | Priyadharshini, S. | Poulose, Navya | Selvin, Joseph
A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0–10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems.
显示更多 [+] 显示较少 [-]Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids
2016
Yang, Lin | Kuang, Huijuan | Liu, Yingxia | Xu, Hengyi | Aguilar, Zoraida P. | Xiong, Yonghua | Wei, Hua
Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn2+ which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn2+ played a major role in the microbial toxicity of ultra-fine-ZnO.
显示更多 [+] 显示较少 [-]Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death
2016
Liu, Gesheng | Zhang, Shuai | Yang, Kun | Zhu, Lizhong | Lin, Daohui
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L−1, respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs.
显示更多 [+] 显示较少 [-]Visible-light reduced silver nanoparticles’ toxicity in Allium cepa test system
2020
Souza, Irisdoris R. | Silva, Lucas R. | Fernandes, Letícia S.P. | Salgado, Lilian D. | Silva de Assis, Helena C. | Firak, Daniele S. | Bach, Larissa | Santos-Filho, Ronaldo | Voigt, Carmen L. | Barros, Ariana C. | Peralta-Zamora, Patricio | Mattoso, Ney | Franco, Celia Regina C. | Soares Medeiros, Lia C. | Marcon, Bruna H. | Cestari, Marta M. | Sant’Anna-Santos, Bruno F. | Leme, Daniela M.
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5–100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4–5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
显示更多 [+] 显示较少 [-]Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm
2020
Lu, Tao | Qu, Qian | Lavoie, Michel | Pan, Xiangjie | Peijnenburg, W.J.G.M. | Zhou, Zhigao | Pan, Xiangliang | Cai, Zhiqiang | Qian, Haifeng
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L⁻¹ silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
显示更多 [+] 显示较少 [-]Uptake and metabolism of clarithromycin and sulfadiazine in lettuce
2019
Tian, Run | Zhang, Rong | Uddin, Misbah | Qiao, Xianliang | Chen, Jingwen | Gu, Gege
Antibiotics are introduced into agricultural fields by the application of manure or biosolids, or via irrigation using reclaimed wastewater. Antibiotics can enter the terrestrial food chains through plant uptake, which forms an alternative pathway for human exposure to antibiotics. However, previous studies mainly focused on detecting residues of the parent antibiotics, while ignoring the identification of antibiotics transformation products in plants. Here, we evaluated the uptake and metabolism of clarithromycin (CLA) and sulfadiazine (SDZ) in lettuce under controlled hydroponic conditions. The antibiotics and their metabolites were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS/MS) and ultra-performance liquid chromatograph Micromass triple quadrupole mass spectrometry (UPLC−QqQ−MS/MS). The structure of CLA, SDZ and N-acetylated SDZ were confirmed with synthesized standards, verifying the reliability of the identification method. Eight metabolites of CLA and two metabolites of SDZ were detected in both the leaves and roots of lettuce. The metabolites of CLA included phases I and II transformation products, while only phase II metabolites of SDZ were observed in lettuce. The proportion of CLA metabolites was estimated to be greater than 70%, indicating that most of the CLA was metabolized in plant tissues. The proportion of SDZ metabolites was lower than 12% in the leaves and 10% in the roots. Some metabolites might have the ability to increase or acquire antibacterial activity. Therefore, in addition to the parent compounds, metabolites of antibiotics in edible vegetables are also worthy of study for risk assessment and to determine the consequences of long-term exposure.
显示更多 [+] 显示较少 [-]