细化搜索
结果 1-10 的 471
Antibiotics Removal in Biological Sewage Treatment Plants
2016
Ghosh, Gopal | Hanamoto, S. | Yamashita, N. | Huang, X. | Tanaka, H.
This study investigated the occurrence and removal of 12 antibiotics (ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, nalidixic acid, azithromycin, clarithromycin, roxithromycin, lincomycin, novobiocin, sulfamethoxazole, trimethoprim) at four sewage treatment plants (STPs): two STPs in Kyoto, Japan and two STPs in Beijing, China. The STPs differed in design and operation conditions, utilized a variety of secondary treatment processes. The antibiotics were frequently detected in influents and effluents, and ranged from ng/L up to lower μg/L. In influent, clarithromycin (1.1–1.6 μg/L) and levofloxacin (3.6–6.8 μg/L) were detected in the highest concentration in Japanese and Chinese STPs, respectively. The overall elimination of the antibiotics were differed between STPs and ranged from negative to >90%. These data demonstrate that there are detectable levels of antibiotics are discharging from STPs, and only some of these antibiotics are being removed in a significant proportion by STPs. It was also observed that biological nutrient removal based sewage treatment processes (anaerobic–anoxic–oxic: A2O; and anoxic–oxic: AO) have relatively higher antibiotics removal efficiencies than oxidation ditch (OD) processes.
显示更多 [+] 显示较少 [-]Phytoremediation of Tetracycline and Degradation Products from Aqueous Solutions
2018
Topal, Murat | Öbek, Erdal | Uslu Şenel, Gülşad | Arslan Topal, E.Işıl
The present study aims at phytoremediation of Lemna gibba L. in aqueous solutions with different concentrations of TC and Degradation Products (DPs). It also tries to determine whether there are differences in TC, ETC, EATC, and ATC levels, accumulated by Lemna gibba L. Exposure concentrations of 50, 100, and 300 ppb have been selected for TC and DPs, showing that the highest TC50, TC100, and TC300 concentrations in the plant have been 23.5+1.1, 80.1+3.9, and 274+13 ppb, respectively, while the highest ETC50, ETC100, and ETC300 have proven to be 39.5+1.9, 47.8+2.4, and 168+8.4 ppb, respectively. The highest EATC50, EATC100, and EATC300 concentrations in the plant have been 45.3+2.3; 65+3.0 and 173+9.0 ppb, respectively, whereas the highest ATC50, ATC100, and ATC300 concentrations in Lemna gibba L. have been 34.7+1.7, 39.6+0.2, and 114+5.6 ppb, respectively. TC, ETC, EATC, and ATC concentrations in Lemna gibba L. have increased with the increase of initial TC, ETC, EATC, and ATC concentration.
显示更多 [+] 显示较少 [-]In vitro immunotoxicity of environmentally representative antibiotics to the freshwater mussel Elliptio complanata.
2012
Gust, M. | Gélinas, M. | Fortier, M. | Fournier, M. | Gagné, F. | Fluvial Ecosystem Research ; Environment and Climate Change Canada (ECCC) | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Armand-Frappier Santé Biotechnologie Research Centre (INRS-AFSB) ; Institut National de la Recherche Scientifique [Québec] (INRS)-Pasteur Network (Réseau International des Instituts Pasteur)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The separate and combined in vitro toxic effects of antibiotics (ciprofloxacin, erythromycin, novobiocin, oxytetracycline, sulfamethazole and trimethoprim) commonly found in urban wastewater effluents were assessed on the immune parameters of Elliptio complanata at environmentally relevant concentrations. The observed responses were then compared to those produced by the physicochemical-treated wastewater effluent of a major city before and after the removal of microorganisms. Most of the selected antibiotics, separately and as mixture, induced changes in immune responses. The removal of microorganisms and fine particles from the effluent increased or decreased the resulting immunotoxic effects, depending of the observed parameter. The immunotoxic effects of erythromycin, sulfamethoxazole and trimethoprim were closely associated to the antibiotic mixture and the filtered effluent. In conclusion, the data revealed that the removal of fine particles and microorganisms from municipal effluents can alter the toxic nature of the effluent that is closely associated with the cumulative effects of antibiotics.
显示更多 [+] 显示较少 [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Cairo University | Faculty of Science, Cairo University | Institut Universitaire de France
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
显示更多 [+] 显示较少 [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
显示更多 [+] 显示较少 [-]Fate of 14C-acetyl sulfamethoxazole during the activated sludge process
2019
Geng, Chunnu | Zhuang, Yujia | Bergheaud, Valerie | Garnier, Patricia | Haudin, Claire-Sophie | The Ecological Technique and Engineering College ; Shanghai Institute of Technology (SIT) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris-Saclay
Compared to antibiotic parent molecule, human metabolites are generally more polar and sometimes not less toxic in wastewater.However, most researches focus on the fate of parent molecule. Therefore, behaviors of human metabolites are little known.Moreover, though much has been done on the fate of antibiotics during activated sludge process, there are still some limitationsand gaps. In the present study, [Ring-14C] acetyl sulfamethoxazole (14C-Ac-SMX) was used to investigate the fate of humanmetabolite of SMX during activated sludge process at environmentally relevant concentration. At the end of 216 h, 3.1% of thespiked activity in the initial aqueous phase was mineralized, 50% was adsorbed onto the solid phase, and 36.5% still remained inthe aqueous phase, indicating that adsorption, not biodegradation, was the main dissipation pathway. In the existence of microbialactivities, accumulation into the solid phase was much higher, which was less bioavailable by chemical sequential extraction. Themultimedia kinetic model simultaneously depicted the fate of Ac-SMX in the gas, aqueous, and solid phases, and demonstratedthat microbially accelerated accumulation onto the solid phase was attributed to lower desorption rate from the solid phase to theaqueous phase, where adsorption rate was not the key factor. Therefore, Ac-SMX cannot be efficiently mineralized and remain inthe aqueous or the solid phases. The accumulation in the solid phase is less bioavailable and is hard to be desorbed in the existenceof microbial activities, and should not be easily degraded, and may lead to the development of antibiotic-resistant bacteria andgenes after discharge into the environment.
显示更多 [+] 显示较少 [-]Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments
2022
Farhan, Ahmad | Rashid, Ehsan Ullah | Waqas, Muhammad | Ahmad, Haroon | Navāz, Shāhid | Munawar, Junaid | Rahdar, Abbas | Varjani, Sunita | Vēlāyutan̲, T. A.
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
显示更多 [+] 显示较少 [-]Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
显示更多 [+] 显示较少 [-]Distribution of florfenicol and norfloxacin in ice during water freezing process: Dual effects by fluorine substituents
2022
Sun, Heyang | Chen, Tianyi | Zhang, Liwen | Dong, Deming | Li, Yanchun | Guo, Zhiyong
Distribution in ice is regarded as one of important transport modes for pollutants in seasonal freeze-up waters in cold regions. However, the distribution characteristics and mechanisms of fluorinated antibiotics as emerging contaminants during the water freezing process remain unclear. Here, florfenicol and norfloxacin were selected as model fluorinated antibiotics to investigate their ice-water distribution. Effects of antibiotic molecular structure on the distribution were explored through comparative studies with their non-fluorinated structural analogs. Results showed that phase changes during the ice growth process redistributed the antibiotics, with antibiotic concentrations in water 3.0–6.4 times higher than those in ice. The solute-rich boundary layer with a concentration gradient was presented at the ice-water interface and controlled by constitutional supercooling during the freezing process. The ice-water distribution coefficient (KIW) values of antibiotics increased by 34.8%–38.0% with a doubling of the cooling area. The solute distribution coefficient (Kbₛ) values of antibiotics at −20 °C were 65.6%–70.3% higher than at −10 °C. The KIW and Kbₛ values of all antibiotics were negatively correlated with their water solubilities. The fluorine substituents influenced the binding energies between antibiotics and ice, resulting in a 1.1-fold increase in the binding energy of norfloxacin on the ice surface relative to its structural analog pipemidic acid. The results provide a new insight into the transport behaviors of fluorinated pharmaceuticals in ice-water systems.
显示更多 [+] 显示较少 [-]Exudates from Miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals
2022
Zadel, Urška | Cruzeiro, Catarina | Raj Durai, Abilash Chakravarthy | Nesme, Joseph | May, Robert | Balázs, Helga | Michalke, Bernhard | Płaza, Grażyna | Schröder, Peter | Schloter, Michael | Radl, Viviane
The composition of root exudates is modulated by several environmental factors, and it remains unclear how that affects beneficial rhizosphere or inoculated microorganisms under heavy metal (HM) contamination. Therefore, we evaluated the transcriptional response of Pseudomonas putida E36 (a Miscanthus x giganteus isolate with plant growth promotion-related properties) to Cd, Pb and Zn in an in vitro study implementing root exudates from M. x giganteus. To collect root exudates and analyse their composition plants were grown in a pot experiment under HM and control conditions. Our results indicated higher exudation rate for plants challenged with HM. Further, out of 29 organic acids identified and quantified in the root exudates, 8 of them were significantly influenced by HM (e.g., salicylic and terephthalic acid). The transcriptional response of P. putida E36 was significantly affected by the HM addition to the growth medium, increasing the expression of several efflux pumps and stress response-related functional units. The additional supplementation of the growth medium with root exudates from HM-challenged plants resulted in a downregulation of 29% of the functional units upregulated in P. putida E36 as a result of HM addition to the growth medium. Surprisingly, root exudates + HM downregulated the expression of P. putida E36 functional units related to plant colonization (e.g., chemotaxis, motility, biofilm formation) but upregulated its antibiotic and biocide resistance compared to the control treatment without HM. Our findings suggest that HM-induced changes in root exudation pattern may attract beneficial bacteria that are in turn awarded with organic nutrients, helping them cope with HM stress. However, it might affect the ability of these bacteria to colonize plants growing in HM polluted areas. Those findings may offer an insight for future in vivo studies contributing to improvements in phytoremediation measures.
显示更多 [+] 显示较少 [-]