细化搜索
结果 1-10 的 474
Phytoremediation of Tetracycline and Degradation Products from Aqueous Solutions 全文
2018
Topal, Murat | Öbek, Erdal | Uslu Şenel, Gülşad | Arslan Topal, E.Işıl
The present study aims at phytoremediation of Lemna gibba L. in aqueous solutions with different concentrations of TC and Degradation Products (DPs). It also tries to determine whether there are differences in TC, ETC, EATC, and ATC levels, accumulated by Lemna gibba L. Exposure concentrations of 50, 100, and 300 ppb have been selected for TC and DPs, showing that the highest TC50, TC100, and TC300 concentrations in the plant have been 23.5+1.1, 80.1+3.9, and 274+13 ppb, respectively, while the highest ETC50, ETC100, and ETC300 have proven to be 39.5+1.9, 47.8+2.4, and 168+8.4 ppb, respectively. The highest EATC50, EATC100, and EATC300 concentrations in the plant have been 45.3+2.3; 65+3.0 and 173+9.0 ppb, respectively, whereas the highest ATC50, ATC100, and ATC300 concentrations in Lemna gibba L. have been 34.7+1.7, 39.6+0.2, and 114+5.6 ppb, respectively. TC, ETC, EATC, and ATC concentrations in Lemna gibba L. have increased with the increase of initial TC, ETC, EATC, and ATC concentration.
显示更多 [+] 显示较少 [-]Antibiotics Removal in Biological Sewage Treatment Plants 全文
2016
Ghosh, Gopal | Hanamoto, S. | Yamashita, N. | Huang, X. | Tanaka, H.
This study investigated the occurrence and removal of 12 antibiotics (ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, nalidixic acid, azithromycin, clarithromycin, roxithromycin, lincomycin, novobiocin, sulfamethoxazole, trimethoprim) at four sewage treatment plants (STPs): two STPs in Kyoto, Japan and two STPs in Beijing, China. The STPs differed in design and operation conditions, utilized a variety of secondary treatment processes. The antibiotics were frequently detected in influents and effluents, and ranged from ng/L up to lower μg/L. In influent, clarithromycin (1.1–1.6 μg/L) and levofloxacin (3.6–6.8 μg/L) were detected in the highest concentration in Japanese and Chinese STPs, respectively. The overall elimination of the antibiotics were differed between STPs and ranged from negative to >90%. These data demonstrate that there are detectable levels of antibiotics are discharging from STPs, and only some of these antibiotics are being removed in a significant proportion by STPs. It was also observed that biological nutrient removal based sewage treatment processes (anaerobic–anoxic–oxic: A2O; and anoxic–oxic: AO) have relatively higher antibiotics removal efficiencies than oxidation ditch (OD) processes.
显示更多 [+] 显示较少 [-]Proteomic analysis in the brain and liver of sea bream (Sparus aurata) exposed to the antibiotics ciprofloxacin, sulfadiazine, and trimethoprim 全文
2024
Fernandez, R. | Colás Ruiz, Nieves del Rocio | Lara Martín, Pablo Antonio | Fernández Cisnal, R. | Hampel, Miriam | Hampel | Biomedicina, Biotecnología y Salud Pública | Química Física
Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 μg L− 1 of CIP, 3.8 ± 2.7 μg L− 1 of SULF and 25.7 ± 10.8 μg L− 1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver. | Ministerio de Economía y Competitividad (MINECO), Spain Universidad de Cádiz, Spain Asociación Universitaria Iberoamericana de Postgrado, Spain Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España, Spain Latin American Association of Postgraduates | 13 páginas
显示更多 [+] 显示较少 [-]In vitro immunotoxicity of environmentally representative antibiotics to the freshwater mussel Elliptio complanata. 全文
2012
Gust, M. | Gélinas, M. | Fortier, M. | Fournier, M. | Gagné, F. | Fluvial Ecosystem Research ; Environment and Climate Change Canada (ECCC) | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Armand-Frappier Santé Biotechnologie Research Centre (INRS-AFSB) ; Institut National de la Recherche Scientifique [Québec] (INRS)-Pasteur Network (Réseau International des Instituts Pasteur)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The separate and combined in vitro toxic effects of antibiotics (ciprofloxacin, erythromycin, novobiocin, oxytetracycline, sulfamethazole and trimethoprim) commonly found in urban wastewater effluents were assessed on the immune parameters of Elliptio complanata at environmentally relevant concentrations. The observed responses were then compared to those produced by the physicochemical-treated wastewater effluent of a major city before and after the removal of microorganisms. Most of the selected antibiotics, separately and as mixture, induced changes in immune responses. The removal of microorganisms and fine particles from the effluent increased or decreased the resulting immunotoxic effects, depending of the observed parameter. The immunotoxic effects of erythromycin, sulfamethoxazole and trimethoprim were closely associated to the antibiotic mixture and the filtered effluent. In conclusion, the data revealed that the removal of fine particles and microorganisms from municipal effluents can alter the toxic nature of the effluent that is closely associated with the cumulative effects of antibiotics.
显示更多 [+] 显示较少 [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies 全文
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Cairo University | Faculty of Science, Cairo University | Institut Universitaire de France
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
显示更多 [+] 显示较少 [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies 全文
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
显示更多 [+] 显示较少 [-]Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands – Maritime Antarctica 全文
2022
Centurion, VB | Silva, JB | Duarte, AWF | Rosa, LH | Oliveira, VM
Whalers Bay, in Deception Island, has one of the most anthropogenically impacted areas in Maritime Antarctica. However, considering the volcanic nature (high concentrations of heavy metals) of Deception Island's soils, this putative anthropogenic impact should be carefully investigated. In this context, the objective of this study was to compare resistome profiles of impacted and non-impacted areas in Deception Island (Whalers Bay, Crater Lake, and Fumarole Bay) and Livingston Island (Hannah Point) in order to investigate the microbiome tolerance/resistance mechanisms selected as a function of environmental drivers. Metagenomics was used to search for genes conferring resistance/tolerance to antibiotics, biocides, and heavy metals. Whalers Bay has a greater diversity of antibiotic, biocide, and heavy metal resistance classes found in its microbiomes. However, Hannah Point, at Livingston Island, has a greater abundance of antibiotic and biocide resistance/tolerance genes. The microbiome of Deception Island's non-impacted areas (Crater Lake and Fumarole Bay) showed resistance/tolerance genes almost entirely to heavy metals. Pb was found in higher concentrations in Whalers Bay soil in comparison to the other areas, indicating human contamination. The non-metric multidimensional scaling (NMDS) analysis revealed that Pb concentrations influenced resistome profiles in Whalers Bay soil. Despite the effect of Pb on the microbial communities of Whalers Bay, most heavy metal concentrations did not have a significant impact on resistome genes, suggesting that the volcanic soil heavy metal concentration of Deception Island has little biological influence.
显示更多 [+] 显示较少 [-]Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India) 全文
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
显示更多 [+] 显示较少 [-]Influence of tetracycline on arsenic mobilization and biotransformation in flooded soils 全文
2022
Shen, Yue | Yu, Haodan | Lin, Jiahui | Guo, Ting | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
This study examined the effect of tetracycline addition on arsenic (As) mobilization and biotransformation in two contrasting soils (upland soil and paddy soil) under flooded conditions. The soils with added tetracycline (0–50 mg kg⁻¹) were incubated for 30 days, and soil properties and microbial functional genes over time were quantified. Tetracycline significantly promoted As reduction and As release into porewater in both soils. The enhancement had resulted from an increase in the concentration of dissolved organic carbon and a decrease in soil redox potential. Tetracycline also increased the abundances of As-reducing genes (arsC and arrA) and the relative abundances of As-reducing bacteria Streptomyces, Bacillus, Burkholderia, Clostridium and Rhodococcus, all of which have been found resistant to tetracycline. These genera play a key part in stimulating As reduction in the presence of tetracycline. The study indicated the significance of tetracycline in the biochemical behavior of As in flooded soils and provided new insights into the potential effects of tetracycline on the quality and safety of agricultural products in the future.
显示更多 [+] 显示较少 [-]Quantifying the contribution rates of sulfonamide antibiotics removal mechanisms in constructed wetlands using multivariate statistical analysis 全文
2022
Zhang, Ling | Yan, Changzhou | Qi, Ran | Yang, Fan
The removal of antibiotics in subsurface flow constructed wetlands is performed through various removal mechanisms, such as adsorption, hydrolysis, microbial degradation and plant uptake. However, the contribution rates of the removal mechanisms in constructed wetlands are still not well studied. This study conducted a series of experiments and used multivariate statistical analysis to determine contribution rates for substrate adsorption, hydrolysis, and microbial degradation. Multiple stepwise regression analysis indicated that specific surface area and salt content were the main factors influencing sulfonamide adsorption, while temperature and pH were the main factors influencing sulfonamide hydrolysis. Variance partitioning analysis showed that the influence of physical-chemical factors was greater than that of nutrients on the microbial community. Partial least squares path analysis showed that the path coefficients of microbial degradation, adsorption and hydrolysis for sulfonamides removal in vertical subsurface flow constructed wetlands were 0.6339, 0.3608 and 0.0351, respectively, while the corresponding path coefficient were 0.5658, 0.4707 and 0.1079 in horizontal subsurface flow constructed wetlands, respectively. This means that microbial degradation contributes the most to the removal of sulfonamides in subsurface flow constructed wetlands. Enhanced microbial degradation may be a powerful measure to improve the removal of sulfonamides. These results will be helpful for understanding the removal mechanism of antibiotics and will provide a definite direction for pertinently improving sulfonamide removal efficiency in constructed wetlands.
显示更多 [+] 显示较少 [-]