细化搜索
结果 1-10 的 37
Ecotoxicological assessment of sewage sludge-derived biochars-amended soil
2021
Tomczyk, Beata | Siatecka, Anna | Bogusz, Aleksandra | Oleszczuk, Patryk
The study aimed to evaluate the ecotoxicity of soil (S) amended with biochars (BCKN) produced by the thermal conversion of sewage sludge (SSL) at temperatures of 500 °C, 600 °C, or 700 °C and SSL itself. The ecotoxicological tests were carried out on organisms representing various trophic levels (Lepidium sativum in plant, Folsomia candida in invertebrates, and Aliivibrio fischeri in bacteria). Moreover, the study evaluated the effects of three plants (Lolium perenne, Trifolium repens, and Arabidopsis thaliana) growing on BCKN700-amended soil on its ecotoxicological properties. The experiment was carried out for six months. In most tests, the conversion of sewage sludge into biochar caused a significant decrease in toxicity by adding it to the soil. The pyrolysis temperature directly determined this effect. The soil amended with the biochars produced at higher temperatures (600 °C and 700 °C) generally exhibited lower toxicity to the test organisms than the SSL. Because of aging, all the biochars lost their inhibition properties against the tested organisms in the solid-phase tests and had a stimulating influence on the reproductive ability of F. candida. With time, the fertilizing effect of the BCKN700 amended soil also increased. The aged biochars also did not have an inhibitory effect on A. fischeri luminescence in the leachate tests. The study has also demonstrated that the cultivation of an appropriate plant species may additionally reduce the toxicity of soil fertilized with biochar. The obtained results show that the conversion of sewage sludge to biochar carried out at an appropriate temperature can become a useful method in reducing the toxicity of the waste and while being safe for agricultural purposes.
显示更多 [+] 显示较少 [-]Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana
2018
Fan, Xiaoji | Chui, Kawai | Lavoie, Michel | Peijnenburg, W.J.G.M. | Zhu, Youchao | Lu, Tao | Fu, Zhengwei | Zhu, Tingheng | Qian, Haifeng
Carbon nanotubes can be either toxic or beneficial to plant growth and can also modulate toxicity of organic contaminants through surface sorption. The complex interacting toxic effects of carbon nanotubes and organic contaminants in plants have received little attention in the literature to date. In this study, the toxicity of multiwall carbon nanotubes (MWCNT, 50 mg/L) and paraquat (MV, 0.82 mg/L), separately or in combination, were evaluated at the physiological and the proteomic level in Arabidopsis thaliana for 7–14 days. The results revealed that the exposure to MWCNT had no inhibitory effect on the growth of shoots and leaves. Rather, MWCNT stimulated the relative electron transport rate and the effective photochemical quantum yield of PSII value as compared to the control by around 12% and lateral root production up to nearly 4-fold as compared to the control. The protective effect of MWCNT on MV toxicity on the root surface area could be quantitatively explained by the extent of MV adsorption on MWCNT and was related to stimulation of photosynthesis, antioxidant protection and number and area of lateral roots which in turn helped nutrient assimilation. The influence of MWCNT and MV on photosynthesis and oxidative stress at the physiological level was consistent with the proteomics analysis, with various over-expressed photosynthesis-related proteins (by more than 2 folds) and various under-expressed oxidative stress related proteins (by about 2–3 folds). This study brings new insights into the interactive effects of two xenobiotics (MWCNT and MV) on the physiology of a model plant.
显示更多 [+] 显示较少 [-]Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana
2020
Chen, Chih-Hung | Yang, Shihong | Liu, Yina | Jamieson, Pierce | Shan, Libo | Chu, Kung-Hui
2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propanoate (known as GenX) has been used as an alternative to perfluorooctanoic acid (PFOA) which was phased out of formulations for industrial and consumer product applications in 2015. While the effects of GenX on lab animals have been studied, little is known about its effects on plants. This study examined and compared the accumulation and toxicity of GenX and PFOA in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Both plants showed reduction in biomass and root growth following exposure to PFOA or GenX in a dosage-dependent manner. The bioaccumulation factors (BFs) of GenX and PFOA were plant species-dependent, with higher BFs in A. thaliana compared to N. bethanminana. Additionally, GenX and PFOA were more readily accumulated into shoot tissues of A. thaliana than in N. bethanminana. Exposure to GenX also caused a reduction in chlorophyll content (18%) and total phenolic compounds (26%). However, GenX exposure increased superoxide dismutase activity and H₂O₂ content (1.6 and 2.6 folds increase, respectively) in N. benthamiana. Overall, our result suggest that GenX is bioaccumulative, and that its accumulation likely inhibits plant growth and photosynthesis as well as inducing oxidative stress.
显示更多 [+] 显示较少 [-]Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana
2020
Jin, Mingkang | Wang, Huan | Liu, Huijun | Xia, Yilu | Ruan, Songlin | Huang, Yuqing | Qiu, Jieren | Du, Shaoting | Xu, Linglin
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C₈MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C₁₀MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C₁₂MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C₈MIM]Cl, [C₁₀MIM]Cl, and [C₁₂MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
显示更多 [+] 显示较少 [-]The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA)
2020
Bahmani, Ramin | Kim, DongGwan | Modareszadeh, Mahsa | Thompson, Drew | Park, Jeong Hoon | Yoo, Hye Hyun | Hwang, Seongbin
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
显示更多 [+] 显示较少 [-]Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants
2018
In parallel to technological advances and ever-increasing use of nanoparticles in industry, agriculture and consumer products, the potential ecotoxicity of nanoparticles and their potential accumulation in ecosystems is of increasing concern. Because scientific reports raise a concern regarding nanoparticle toxicity to plants, understanding of their bioaccumulation has become critical and demands more research. Here, the synthesis of isotopically-labeled nanoparticles of silver, copper and zinc oxide is reported; it is demonstrated that while maintaining the basic properties of the same unlabeled (“regular”) nanoparticles, labeled nanoparticles enable more sensitive tracing of nanoparticles within plants that have background elemental levels. This technique is particularly useful for working with elements that are present in high abundance in natural environments. As a benchmark, labeled and unlabeled metal nanoparticles (Ag-NP, Cu-NP, ZnO-NP) were synthesized and compared, and then exposed in a series of growth experiments to Arabidopsis thaliana; the NPs were traced in different parts of the plant. All of the synthesized nanoparticles were characterized by TEM, EDS, DLS, ζ-potential and single particle ICP-MS, which provided essential information regarding size, composition, morphology and surface charge of nanoparticles, as well as their stability in suspensions. Tracing studies with A. thaliana showed uptake/retention of nanoparticles that is more significant in roots than in shoots. Single particle ICP-MS, and scanning electron micrographs and EDS of plant roots showed presence of Ag-NPs in particular, localized areas, whereas copper and zinc were found to be distributed over the root tissues, but not as nanoparticles. Thus, nanoparticles in any natural matrix can be replaced easily by their labeled counterparts to trace the accumulation or retention of NPs. Isotopically-labeled nanoparticles enable acquisition of specific results, even if there are some concentrations of the same elements that originate from other (natural or anthropogenic) sources.
显示更多 [+] 显示较少 [-]Expression of the human gene CYP1A2 enhances tolerance and detoxification of the phenylurea herbicide linuron in Arabidopsis thaliana plants and Escherichia coli
2018
Azab, Ehab | Kebeish, Rashad | Hegazy, A.K.
The phenylurea herbicide, linuron (LIN), is used to control various types of weeds. Despite its efficient role in controlling weeds, it presents a persistent problem to the environment. In the current study, phytoremediation properties of transgenic CYP1A2 Arabidopsis thaliana plants to LIN were assessed. CYP1A2 gene was firstly cloned and expressed in bacteria before proceeding to plants. In presence of LIN, The growth of CYP1A2 expressing bacteria was superior compared to control bacteria transformed with the empty bacterial expression vector pET22b(+). No clear morphological changes were detected on CYP1A2 transgenic plants. However, significant resistance to LIN herbicide application either via spraying the foliar parts of the plant or via supplementation of the herbicide in the growth medium was observed for CYP1A2 transformants. Plant growth assays under LIN stress provide strong evidence for the enhanced capacity of transgenic lines to grow and to tolerate high concentrations of LIN compared to control plants. HPLC analyses showed that detoxification of LIN by bacterial extracts and/or transgenic plant leaves is improved as compared to the corresponding controls. Our data indicate that over expression of the human CYP1A2 gene increases the phytoremediation capacity and tolerance of Arabidopsis thaliana plants to the phenylurea herbicide linuron.
显示更多 [+] 显示较少 [-]Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system
2017
Marsik, P. | Sisa, M. | Lacina, O. | Motkova, K. | Langhansova, L. | Rezek, J. | Vanek, T.
The uptake and metabolism of ibuprofen (IBU) by plants at the cellular level was investigated using a suspension culture of A. thaliana. Almost all IBU added to the medium (200 μM) was metabolized or bound to insoluble structures in 5 days. More than 300 metabolites were determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis, and most of these are first reported for plants here. Although hydroxylated derivatives formed by oxidation on the isobutyl side chain were the main first-step products of IBU degradation, conjugates of these products with sugar, methyl and amino acid groups were the dominant metabolites in the culture. The main portion of total added IBU (81%) was accumulated in the extractable intracellular pool, whereas the cultivation medium fraction contained only 19%. The amount of the insoluble cell-wall-bound IBU was negligible (0.005% of total IBU).
显示更多 [+] 显示较少 [-]Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum
2017
Jin, Yujian | Fan, Xiaoji | Li, Xingxing | Zhang, Zhenyan | Sun, Liwei | Fu, Zhengwei | Lavoie, Michel | Pan, Xiangliang | Qian, Haifeng
Nano-aluminium oxide (nAl2O3) is one of the most widely used nanomaterials. However, nAl2O3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl2O3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl2O3 or to the equivalent molar concentration of ionic Al (AlCl3) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl2O3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl2O3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl2O3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl2O3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl2O3 and ionic Al in Arabidopsis.
显示更多 [+] 显示较少 [-]Diclofenac in Arabidopsis cells: Rapid formation of conjugates
2017
Fu, Qiuguo | Ye, Qingfu | Zhang, Jianbo | Richards, Jaben | Borchardt, Dan | Gan, Jay
Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications.
显示更多 [+] 显示较少 [-]