细化搜索
结果 1-10 的 25
Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)
2021
Johansen, Sverre | Poste, Amanda | Allan, Ian | Evenset, Anita | Carlsson, Pernilla
Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system.Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (<level of detection-28 pg/g dw ΣPCB₁₄, 16–100 pg/g dw HCB) compared to outer marine sediments 630-880 pg/g dw ΣPCB₁₄, 530–770 pg/g dw HCB). There was a strong spatial gradient in sediment PCB and HCB concentrations with lowest concentrations in river estuaries and in front of marine-terminating glaciers and increasing concentrations toward the outer fjord. This suggests that rather than leading to increased concentrations, inputs of SPM from land lead to a dilution of contaminant concentrations in nearshore sediments. Preliminary estimates of SPM:water activity ratios suggest that terrestrial particles (with low contaminant concentrations) may have the potential to act as sorbents of dissolved contaminants in the coastal water column, with implications for bioavailability of POPs to the marine food web. There is concern that ongoing increases in fluxes of freshwater, sediments and associated terrestrial material (including contaminants) from land to the Arctic Ocean will lead to increased mobilization and transport of POPs to coastal ecosystems. However, the results of this study indicate that on Svalbard, inputs from land may in fact have the opposite effect, leading to reduced concentrations in coastal sediments and waters.
显示更多 [+] 显示较少 [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change
2021
Muir, Derek C.G. | Galarneau, Elisabeth
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada’s environmental measurement strategy and biogeochemical modelling capability.
显示更多 [+] 显示较少 [-]Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean
2020
Lischka, A. | Lacoue-Labarthe, T. | Bustamante, P. | Piatkowski, U. | Hoving, H.J.T.
The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top predators—such as marine mammals, seabirds and fish—and is also an efficient predator of crustaceans and fish. Gonatus fabricii is the most abundant cephalopod in the northern Atlantic and Arctic Ocean but the trace element accumulation of this ecologically important species is unknown. In this study, trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were analysed from the mantle muscle and the digestive gland tissue of juveniles, adult females, and adult males that were captured south of Disko Island off West-Greenland. To assess the feeding habitat and trophic position of this species, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were measured in their muscle tissue. Mercury concentrations were positively correlated with size (mantle length) and trophic position. The Hg/Se ratio was assessed because Se has been suggested to play a protective role against Hg toxicity and showed a molar surplus of Se relative to Hg. Cadmium concentrations in the digestive gland were negatively correlated with size and trophic position (δ15N), which suggested a dietary shift from Cd-rich crustaceans towards Cd-poor fish during ontogeny. This study provides trace element concentration data for G. fabricii from Greenlandic waters, which represents baseline data for a northern cephalopod species. Within West-Greenland waters, G. fabricii appears to be an important vector for the transfer of Cd in the Arctic pelagic food web.
显示更多 [+] 显示较少 [-]Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation
2018
The bioaccumulative, persistent and toxic properties of long-chain perfluoroalkyl acids (PFAAs) resulted in strict regulations on PFAAs, especially in developed countries. Consequently, the industry manufacturing of PFAAs shifts from long-chain to short-chain. In order to better understand the pollution situation of PFAAs in marine environment under this new circumstance, the occurrence of 17 linear PFAAs was investigated in 30 surface seawater samples from the North Pacific to Arctic Ocean (123°E to 24°W, 32 to 82°N) during the sixth Chinese Arctic Expedition in 2014. Total concentrations of PFAAs (∑PFAAs) were between 346.9 pg per liter (pg/L) to 3045.3 pg/L. The average concentrations of ∑PFAAs decreased in the order of East China Sea (2791.4 pg/L, n = 2), Sea of Japan (East Sea) (832.8 pg/L, n = 6), Arctic Ocean (516.9 pg/L, n = 7), Chukchi Sea (505.2 pg/L, n = 4), Bering Sea (501.2 pg/L, n = 8) and Sea of Okhotsk (417.7 pg/L, n = 3). C4 to C9 perfluoroalkyl carboxylic acids (PFCAs) were detected in more than 80% of the surface water samples. Perfluorobutanoic acid (PFBA) was the most prevalent compound and perfluorooctanoic acid (PFOA) was the second abundant homolog. The concentration of individual PFAAs in the surface seawater of East China Sea was much higher than other sampling seas. As the spatial distribution of PFAAs in the marine environment was mainly influenced by the river inflow from the basin countries, which proved the large input from China. Furthermore, the marginal seas of China were found with the greatest burden of PFOA comparing the pollution level in surface seawater worldwide. PFBA concentration in the surrounding seas of China was also high, but distributed more evenly with an obvious increase in recent years. This large-scale monitoring survey will help the improvement and development of PFAAs regulations and management, where production shift should be taken into consideration.
显示更多 [+] 显示较少 [-]Volatilization of polycyclic aromatic hydrocarbons (PAHs) over the North Pacific and adjacent Arctic Ocean: The impact of offshore oil drilling
2021
Chen, Afeng | Wu, Xiaoguo | Simonich, Staci L Massey | Kang, Hui | Xie, Zhouqing
Air and seawater samples were collected in 2016 over the North Pacific Ocean (NPO) and adjacent Arctic Ocean (AO), and Polycyclic Aromatic Hydrocarbons (PAHs) were quantified in them. Atmospheric concentrations of ∑₁₅ PAHs (gas + particle phase) were 0.44–7.0 ng m⁻³ (mean = 2.3 ng m⁻³), and concentrations of aqueous ∑₁₅ PAHs (dissolved phase) were 0.82–3.7 ng L⁻¹ (mean = 1.9 ng L⁻¹). Decreasing latitudinal trends were observed for atmospheric and aqueous PAHs. Results of diagnostic ratios suggested that gaseous and aqueous PAHs were most likely to be related to the pyrogenic and petrogenic sources, respectively. Three sources, volatilization, coal and fuel oil combustion, and biomass burning, were determined by the PMF model for gaseous PAHs, with percent contributions of 10%, 44%, and 46%, respectively. The 4- ring PAHs underwent net deposition during the cruise, while some 3- ring PAHs were strongly dominated by net volatilization, even in the high latitude Arctic region. Offshore oil/gas production activities might result in the sustained input of low molecular weight 3- ring PAHs to the survey region, and further lead to the volatilization of them. Compared to the gaseous exchange fluxes, fluxes of atmospheric dry deposition and gaseous degradation were negligible. According to the extrapolated results, the gaseous exchange of semivolatile aromatic-like compounds (SALCs) may have a significant influence on the carbon cycling in the low latitude oceans, but not for the high latitude oceans.
显示更多 [+] 显示较少 [-]Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions
2021
Martínez-Ávila, Liliana | Peidro-Guzmán, Heidy | Pérez-Llano, Yordanis | Moreno Perlín, Tonatiuh | Sánchez-Reyes, Ayixon | Aranda, Elisabet | Ángeles de Paz, Gabriela | Fernández-Silva, Arline | Folch-Mallol, Jorge Luis | Cabana, Hubert | Gunde-Cimerman, Nina | Batista-García, Ramón Alberto
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
显示更多 [+] 显示较少 [-]The detection of Fukushima-derived radiocesium in the Bering Sea and Arctic Ocean six years after the nuclear accident
2020
Huang, Dekun | Lin, Jing | Du, Jinzhou | Yu, Tao
After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, radionuclides released by this event were observed in the Pacific Ocean. Models predicted that these radionuclides would be transported to the Bering Sea; however, limited evidence currently reveals the transportation of these radionuclides to the Arctic Ocean. Here, we provide the first direct observation showing that FDNPP-derived 134Cs and 137Cs were present in subarctic regions and the Arctic Ocean (Chukchi Sea) in 2017. Furthermore, we conclude that these radionuclides were transported from the Pacific Ocean into the Bering and Chukchi Seas by ocean currents. Additionally, the 137Cs activity concentrations in the Bering Sea exceed those in all previous reports. Due to the continuous leaking of radionuclides from the FDNPP, we hypothesize that FDNPP-derived radionuclides will be continuously transported to the Arctic Ocean in the next several years. Our results suggest that though far away from Fukushima, the accident-derived anthropogenic radionuclides also influenced the Arctic Ocean by ocean currents.
显示更多 [+] 显示较少 [-]Enhanced particulate Hg export at the permafrost boundary, western Siberia
2019
Lim, Artem G. | Sonke, Jeroen E. | Krickov, Ivan V. | Manasypov, Rinat M. | Loiko, Sergey V. | Pokrovsky, Oleg S.
Arctic permafrost soils contain large amounts of organic carbon and the pollutant mercury (Hg). Arctic warming and associated changes in hydrology, biogeochemistry and ecology risk mobilizing soil Hg to rivers and to the Arctic Ocean, yet little is known about the quantity, timing and mechanisms involved. Here we investigate seasonal particulate Hg (PHg) and organic carbon (POC) export in 32 small and medium rivers across a 1700 km latitudinal permafrost transect of the western Siberian Lowland. The PHg concentrations in suspended matter increased with decreasing watershed size. This underlines the significance of POC-rich small streams and wetlands in PHg export from watersheds. Maximum PHg concentrations and export fluxes were located in rivers at the beginning of permafrost zone (sporadic permafrost). We suggest this reflects enhanced Hg mobilization at the permafrost boundary, due to maximal depth of the thawed peat layer. Both the thickness of the active (unfrozen) peat layer and PHg run-off progressively move to the north during the summer and fall seasons, thus leading to maximal PHg export at the sporadic to discontinuous permafrost zone. The discharge-weighed PHg:POC ratio in western Siberian rivers (2.7 ± 0.5 μg Hg: g C) extrapolated to the whole Ob River basin yields a PHg flux of 1.5 ± 0.3 Mg y⁻¹, consistent with previous estimates. For current climate warming and permafrost thaw scenarios in western Siberia, we predict that a northward shift of permafrost boundaries and increase of active layer depth may enhance the PHg export by small rivers to the Arctic Ocean by a factor of two over the next 10–50 years.
显示更多 [+] 显示较少 [-]Potential impacts of offshore oil spills on polar bears in the Chukchi Sea
2018
Wilson, Ryan R. | Perham, Craig | French-McCay, Deborah P. | Balouskus, Richard
Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1–10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27–38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans.
显示更多 [+] 显示较少 [-]Efforts to advance underwater noise management in Canada: Introduction to the Marine Pollution Bulletin Special Issue
2022
Breeze, Heather | Nolet, Véronique | Thomson, Dugald | Wright, Andrew J. | Marotte, Emmaline | Sanders, Michelle
This introduction to a special issue on approaches to managing underwater noise in Canada provides a brief overview of recent efforts to better understand and reduce anthropogenic underwater noise. Recent programs have aimed to increase understanding of anthropogenic noise in the habitats of highly endangered whales and have supported management actions such as vessel slow downs. Technical workshops have advanced the development of quiet ship design and associated technologies. Collaborative research examined noise levels in the St. Lawrence Estuary and the Arctic Ocean. Efforts to better manage noise have gone beyond shipping: enhanced mitigation measures have been put in place for naval exercises near habitats used by southern resident killer whales, while other work has focused on the identification of appropriate metrics for measuring noise. To coordinate and advance these and other efforts, the Government of Canada is developing a national Ocean Noise Strategy.
显示更多 [+] 显示较少 [-]