细化搜索
结果 1-10 的 171
Year-round element quantification of a wide-ranging seabird and their relationships with oxidative stress, trophic ecology, and foraging patterns
2021
Laranjeiro, Maria I. | Alves, Luís M.F. | da Silva, Joana M. | Pereira, Jorge M. | Norte, Ana C. | Paiva, Vítor H. | Lemos, Marco F.L. | Ramos, Jaime A. | Novais, Sara C. | Ceia, Filipe R.
Multidisciplinary approaches are essential to diligently assess environmental health status of ecosystems. In this study, year-round chemical elements' exposure and impacts were assessed on the wide-ranging Cory's shearwater Calonectris borealis breeding in Berlenga Island, offshore Portugal, North Atlantic Ocean. The aim was to identify potential contamination and oxidative stress sources associated with trophic ecology, habitat and spatial use, and foraging patterns. A set of 20 chemical elements were quantified, along with oxidative stress biomarkers, stable isotope analyses, and GPS tracking data. Birds presented higher accumulation to some non-essential elements along the year (i.e. arsenic, As; cadmium, Cd; mercury, Hg; lead, Pb; and strontium, Sr), in which concentrations were similar or surpassed other procellariform seabird populations all over the world. No significant differences were found for any of the elements between different periods within the breeding season, with exception of Hg. However, a Principal Component Analysis taking into consideration a group of elements showed differences between pre-laying and chick-rearing periods, with overall higher concentrations in the former. Individuals spending more time engaging in an intensive search for food, and in more coastal environments, presented overall higher element concentrations, and particularly Hg. Contrary to expectations, no relationships were found between chemical elements and oxidative stress. On the other hand, spatial use and foraging patterns of Cory's shearwaters influenced their oxidative stress responses. Our results highlight the need for multidisciplinary approaches to deepen understanding of the large-scale vulnerability of bioindicators such as seabirds and, by extension, the overall environmental health of ecosystems in which they rely.
显示更多 [+] 显示较少 [-]Satellite evidence for pervasive water eutrophication in the Doce River reservoirs following the collapse of the Fundao dam in Brazil☆
2021
Coimbra, Keyla Thayrinne Oliveira | Alcântara, Enner | de Souza Filho, Carlos Roberto
One of the worst socio-environmental disasters to mark the history of Brazil and the world occurred in November 2015 and involved the mining sector. The collapse of the Fundao dam released approximately 43 million m³ of iron ore tailings, which moved downstream to reach the Doce River. This resulted in the contamination of water, soil, and sediments along the entire course of the river, which also affected its mouth in the Atlantic Ocean. Four years after the disaster, several socio-environmental problems continue to persist in the affected areas. In this context, the reservoirs built along the Doce River deserve special attention as they are artificial environments that are highly vulnerable to changes in water parameters. This study aims to determine water quality indicators of these reservoirs using remote sensing data and image processing methods, including semi-analytical algorithms, to comprehend the progress of eutrophication processes. Operational land imager/Landsat-8 data (from 2013 to 2019) were used to map the suspended particulate matter (SPM), euphotic zone (Zₑᵤ) and chlorophyll-a (Chl-a) before and after the collapse. The results showed significant changes in SPM and Zₑᵤ in the reservoirs after the collapse. Non-conformity of these parameters is observed even now, and they tend to intensify during rainy periods when resuspension processes of sediments occur. Moreover, there has been an increase in the eutrophication of reservoirs as noticed by the significant increase in Chl-a after the disaster, especially in January, July, and August.
显示更多 [+] 显示较少 [-]Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides
2021
Lamas, JPablo | Arévalo, Fabiola | Moroño, Ángeles | Correa, Jorge | Rossignoli, Araceli E. | Blanco, Juan
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg⁻¹, and a maximum value of 23.93 μg kg⁻¹. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
显示更多 [+] 显示较少 [-]Message in a bottle: Assessing the sources and origins of beach litter to tackle marine pollution
2021
Ryan, Peter G. | Weideman, Eleanor A. | Perold, Vonica | Hofmeyr, Greg | Connan, Maëlle
Beaches are key attractions for tourism and recreation, and considerable effort is made to keep beaches clean, yet many beaches still have substantial litter loads. Lasting solutions to reduce the amounts of marine litter require an understanding of litter sources. We collected bottles and other single-use containers at 32 sites around the South African coast to infer their sources based on their age and country of manufacture. Bottle densities varied greatly among beaches (8–450 bottles·km⁻¹), depending on proximity to local urban centres and beach cleaning frequency. Most bottles were plastic, despite well-developed recycling initiatives for PET and HDPE bottles in South Africa. Street litter was dominated by bottles made in South Africa (99%), but foreign-manufactured bottles comprised up to 74% of bottles at some beaches, with an increase from urban (4%) through semi-urban (24%) to remote beaches (45%). Most foreign bottles were PET drink bottles from China and other Asian countries, followed by South America and Europe, with little regional variation in the contribution from these sources. This fact, coupled with their recent manufacture dates (mainly <2 years old), indicates that most foreign PET drink bottles are dumped illegally from ships. By comparison, foreign HDPE bottles were more common along the southeast coast of South Africa than along the west coast, consistent with many of these bottles arriving by long-distance drift across the Indian Ocean from southeast Asia. The most common country of origin for these bottles was Indonesia, and most newly-arrived HDPE bottles were 4–6 years old. To tackle beach litter in South Africa we need to greatly reduce plastic leakage from land-based sources, both locally and in southeast Asia, as well as improve measures to prevent the illegal dumping of plastics and other persistent wastes from ships.
显示更多 [+] 显示较少 [-]Regional variation in mercury bioaccumulation among NW Atlantic Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish
2021
Roose, Hunter | Paterson, Gordon | Frisk, Michael G. | Cerrato, Robert M. | Nitschke, Paul | Olin, Jill A.
Mercury (Hg) concentrations in fishes from the NW Atlantic Ocean pose concern due to the importance of this region to U.S. fisheries harvest. In this study, total Hg (THg) concentrations and nitrogen stable isotope (δ¹⁵N) values were quantified in muscle tissues sampled from Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish collected during a fishery-independent survey conducted in the NW Atlantic to compare bioaccumulation patterns between these species. Total Hg concentrations averaged (±SD) 0.4 ± 0.4 μg/g dry weight (d.w.) for L. chamaeleonticeps and 1.1 ± 0.7 μg/g d.w. for C. microps with <2% of all sampled fish, those >70 cm fork length, exceeding the most restrictive USEPA regulatory guidelines for human consumption (THg > 0.46 μg/g w.w.), when converted to wet weight concentrations. The THg concentrations reported here for individuals from the NW Atlantic stock are comparable to those reported for similarly sized individuals collected from the SW Atlantic stock but notably lower than those reported for Gulf of Mexico L. chamaeleonticeps, indicating different Hg exposure and assimilation kinetics for fish from the NW Atlantic, and highlights the broad geographic variability of Hg bioaccumulation among Tilefish stocks. Caulolatilus microps had higher δ¹⁵N values relative to L. chamaeleonticeps and a pattern of decreasing THg concentrations was also present from south to north across the study range. It is concluded that this trophic difference and spatial pattern in Tilefish THg concentrations emphasizes the habitat and resource partitioning mechanisms described for these sympatric species that permits their coexistence in the continental shelf environment. Importantly, regional variability in THg concentrations accentuate the possible roles of fine-scale biotic and abiotic processes that can act to regulate Hg bioaccumulation among individuals and species.
显示更多 [+] 显示较少 [-]Microplastic ingestion by Atlantic horse mackerel (Trachurus trachurus) in the North and central Moroccan Atlantic coast between Larache (35°30′N) and Boujdour (26°30′N)
2021
Maaghloud, Hind | Houssa, Rachida | Bellali, Fatima | El Bouqdaoui, Karima | Ouansafi, Soukaina | Loulad, Safia | Fahde, Abdelilah
Horse mackerel is a semi-pelagic species found in abundance in the Moroccan coasts and occupies the first ranks in the catches landed by the coastal fleet. In this study, we investigated the ingestion of Polyamide, Acrylic and Polystyrene by Atlantic horse mackerel, in the Moroccan Atlantic coastal area located between Larache (35°30′N) and Boujdour (26°30′N). The objective is to map the spatial distribution of horse Mackerel containing microplastics (MPs) in their stomachs and identify hot spot areas. We also aim to verify the most ingested polymer by this fish characterized by significant daily vertical migrations. The results show that the three studied polymers were detected in the stomach contents of more than 73% of studied fishes. The hot spot areas are located more in the northern part where urbanization and fishing activity are important. Polyamide, the densest polymer, is the most abundant (86% of cases), followed by acrylic. These two polymers were found in association in 47% of cases. No correlation between the presence of MPs in the stomach contents and the size of the individual fishes was noted. Interestingly, the group of mature specimens ingested more MPs than the immature group.
显示更多 [+] 显示较少 [-]Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean)
2020
Azaroff, Alyssa | Goñi Urriza, Marisol | Gassie, Claire | Monperrus, Mathilde | Guyoneaud, Rémy
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms’ (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
显示更多 [+] 显示较少 [-]Characterization of plastic micro particles in the Atlantic Ocean seashore of Cape Town, South Africa and mass spectrometry analysis of pyrolyzate products
2020
Vilakati, Bongekile | Sivasankar, V. | Mamba, Bhekie B. | Omine, Kiyoshi | Msagati, Titus A.M.
The microplastic particles with 29 pyrolyzate compounds of marine water samples from the seashore locations in Cape Town, South Africa were analysed using Pyrolysis- GC-TOF-MS. The mass spectra data documented the presence of various chemical groups that include alkanes, alkenes, dienes, fatty acids and esters, biphenyl and benzene (along with derivatives). Out of 16 identified polymers in the study area, polythene (PE) was the dominant in six out of seven locations with 87.5% followed by polyethylene terephthalate (PET) and polyvinylchloride (PVC) in five (71.4%) and four (57.1%) out of seven locations respectively. The other constituent polymers of microplastics identified through pyrolyzates were polystyrene (PS), polyamide 12 (PA-12) polyacrylic acid (PAA) and ethyl vinyl acetate (EVA) copolymer. The microplastic samples contained six additives predominantly in the family of fatty acid esters and nine plasticizers from alcohols, carboxylic esters and acids. The base peaks of m/z 41, 43, 55, 57, 69, 73, 91, 102, 105, 127 and 154 were characterized respectively with the fragmented species of C₃H₅⁺, C₃H₇⁺, C₄H₇⁺, C₄H₉⁺, C₅H₉⁺, C₃H₅O₂⁺, C₇H₇⁺, C₃H₁₀O₂⁺(McLafferty ion), C₈H₉⁺, C₈H₁₅O⁺ and C₁₂H₁₀⁺. Accordingly to Globally Harmonized System (GHS) of hazard classification, about 27.4% of pyrolyzates are Irritants, 31.4% of pyrolyzates found to be Irritants along with other hazards such as Flammable, Compressed Gas, Environmental Hazard, Corrosive, Health Hazard, Acute Toxicity and Allergy. About 41.2% of the pyrolyzates are not classified under the Irritant category. Characterizations of the plastic microparticles from the seven seashore locations such as FTIR, SEM with EDX and TGA were also done and discussed to understand the functional groups, surface morphology with elemental composition and stability respectively of the polymeric microparticles.
显示更多 [+] 显示较少 [-]Contamination status by persistent organic pollutants of the Atlantic spotted dolphin (Stenella frontalis) at the metapopulation level
2018
Méndez-Fernandez, Paula | Taniguchi, Satie | Santos, Marcos C.O. | Cascão, Irma | Quérouil, Sophie | Martín, Vidal | Tejedor, Marisa | Carrillo, Manuel | Rinaldi, Carolina | Rinaldi, Renato | Montone, Rosalinda C.
The Atlantic spotted dolphin (Stenella frontalis) is an endemic species of the tropical-temperate Atlantic Ocean with widespread distribution. Although this species has been the subject of a large number of studies throughout its range, it remains in the “data deficient” category of the International Union for Conservation of Nature (IUCN). Chemical pollution by persistent organic pollutants (POPs) has been listed as one of the major threats to this species, however, there is no information on a wide scale. Thus, the aim of the present study was to investigate the contamination status of spotted dolphins on the metapopulation level as well as determine spatial and temporal variations in POP concentrations and bio-accumulation. A total of 115 blubber samples collected from a large part of the Atlantic basin were analysed for PCBs, DDTs, PBDEs, chlordanes, HCB and mirex. Although PCBs and DDTs were the predominant compounds in all areas, inter-location differences in POP concentrations were observed. Dolphins found at São Paulo, southeastern coast of Brazil, had the highest PCB concentrations (median: 10.5 μg/g lw) and Canary Islands dolphins had the highest DDT concentrations (median: 5.13 μg/g lw). Differences in PCB patterns among locations were also observed. Dolphins from the Azores and São Paulo demonstrated a similar pattern, with relatively highly contributions of tetra- (6.8 and 5.2%, respectively) and penta-CBs (25.6 and 23.8%, respectively) and lower contributions of hepta-CBs (20.8 and 23.5%, respectively) in comparison to other areas. Moreover, the sex of the animals and the year in which sampling or capture occurred exerted an important influence on the majority of the POPs analysed. Comparisons with toxicity thresholds available in the literature reveal that the São Paulo and Canary Island dolphins are the most vulnerable populations and should be considered in future conservation and management programs for the Atlantic spotted dolphin.
显示更多 [+] 显示较少 [-]Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study
2018
Ghosal, Sutapa | Chen, Michael | Wagner, Jeff | Wang, Zhong-Min | Wall, Stephen
Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues.
显示更多 [+] 显示较少 [-]