细化搜索
结果 1-10 的 18
Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges
2021
Su, Guangcan | Ong, Hwai Chyuan | Ibrahim, Shaliza | Fattah, I. M Rizwanul | Mofijur, M. | Chong, Cheng Tung
The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
显示更多 [+] 显示较少 [-]Mobilization of arsenic on nano-TiO2 in soil columns with sulfate reducing bacteria
2018
Luo, Ting | Ye, Li | Chan, Tingshan | Jing, Chuanyong
Arsenic (As) remediation in contaminated water using nanoparticles is promising. However, the fate and transport of As associated with nano-adsorbents in natural environment is poorly understood. To investigate the fate of adsorbed As on nano-TiO₂ in changed redox condition from oxic to anoxic, we added the As(V)-TiO₂ suspension in groundwater to an autoclaved soil column which inoculated a sulfate-reducing bacterium, Desulfovibrio vulgaris DP4. The dissolved As(V) in effluent increased to 798 μg/L for the biotic column and to 1510 μg/L for the abiotic control, and dissolved As(III) was observed only in biotic column. The total As (dissolved plus particulate) in the biotic column effluent (high to 2.5 mg/L) was substantially higher than the abiotic control (1.5 mg/L). Therefore SRB restrained the release of dissolved As, and facilitated the transport of particulate As. Micro-XRF analysis suggested that the nano-TiO₂ with As was mainly retained in the influent front and that its transport was negligible. Our pe-pH calculation and XANES analysis demonstrated that generated secondary iron minerals containing magnetite and mackinawite mainly were responsible for dissolved As retention, and then transported with As as particulate As. The results shed light on the mobilization of adsorbed As on a nano-adsorbent in an anoxic environment.
显示更多 [+] 显示较少 [-]Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite
2021
Wang, Yale | Xu, Yingming | Huang, Qingqing | Liang, Xuefeng | Sun, Yuebing | Qin, Xu | Zhao, Lijie
Cadmium (Cd) pollution in alkaline soil in some areas of northern China has seriously threatened wheat production and human health. However, there are still few effective amendments for alkaline soil, and the mechanism of amendments with a good immobilization effect remains unclear. In this study, soil sterilization experiments were conducted to investigate the effects of soil microorganisms on the immobilization of a novel amendment—mercapto palygorskite (MPAL) in Cd-contaminated alkaline soils. The results showed that the mercapto on the MPAL surface was not affected by autoclaving. Compared with the control, the available Cd concentration in 0.025% MPAL treatments decreased by 18.80-29.23% after 1 d of aging and stabled after 10 d of aging. Importantly, the immobilization of MPAL on Cd in sterilized soil was significantly better than that in natural soil due to the changes in Cd fractions. Compared with MPAL-treated natural soil, exchangeable Cd fraction and carbonate-bound Cd fraction in MPAL-treated sterilized soil decreased by 20.79–27.09% and 20.05–26.45%, while Fe/Mn oxide-bound Cd fraction and organic matter-bound Cd fraction increased by 17.77–22.68% and 18.85–27.32%. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis found that the potential functions of the microbial community in normal and sterilized soil were different significantly. Soil sterilization increased the soil pH and decreased the arylsulfatase activity, but did not change the soil zeta potential and available sulfur. The changes in Cd fractions in MPAL-treated sterilized soil may be related to the reduction in the bacterial community and the changes in function microbial, but not to the soil properties. In addition, MPAL application had little effects on the bacterial community, soil pH value, zeta potential, available sulfur, and arylsulfatase. These results showed that the immobilization of MPAL on Cd in alkaline soil was stable and effective, and was not affected by soil sterilization and soil microorganism reduction.
显示更多 [+] 显示较少 [-]Release of microplastics and nanoplastics in water from disposable surgical masks after disinfection
2022
Liang, Hao | Wang, Na | Liu, Di | Ge, Wei | Song, Ningning | Wang, Fangli | Chai, Chao
During the COVID-19 pandemic, disposable surgical masks were generally disinfected and reused due to mask shortages. Herein, the role of disinfected masks as a source of microplastics (MPs) and nanoplastics (NPs) was investigated. The amount of MPs and NPs released from masks disinfected by UV ranged from 1054 ± 106 to 2472 ± 70 and from 2.55 ± 0.22 × 10⁹ to 6.72 ± 0.27 × 10⁹ particles/piece, respectively, comparable to that of the undisinfected masks, and the MPs were changed to small-sized particles. The amount of MPs and NPs released after alcohol and steam treatment were respectively lower and higher than those from undisinfected masks, and MPs were shifted to small-sized particles. The amount of MPs and NPs released in water after autoclaving was lower than for undisinfected masks. In all, the amount of fibers released after disinfection decreased greatly, and certain disinfection processes were found to increase the amount of small-sized NPs released from masks into aqueous environments.
显示更多 [+] 显示较少 [-]Short-term efficiency of epibenthic microbial mat components on phosphorus sorption
2020
Perillo, Vanesa Liliana | Pan, Jerónimo | La Colla, Noelia Soledad | Serra, Analía Verónica | Botté, Sandra Elizabeth | Cuadrado, Diana Graciela
Microbial mats may be an alternative tool for phosphorus (P) remediation of eutrophic coastal waters. The main objective of this work was to determine the importance that the living and non-living components of the mats have on P short-term sorption. Microbial mats were collected in the Paso Seco coastal flat, Argentina (40°38′3.32″S; 62°12′24.85″W), and incubated under controlled conditions in the lab. An adsorption curve was performed with the microbial mats. Active mats had a Freundlich constant 8.9-fold higher than underlying sandy sediments. Collected samples were then treated as follows: maintaining and disturbing their structural integrity (natural and autoclaved, respectively), and both conditions were incubated with filtered seawater, without and with phosphate addition (0 and 5 mg P L⁻¹, respectively). Natural mats had a significantly-higher phosphate removal percentage than autoclaved ones, suggesting that living microorganisms increase P short-term sorption efficiency by ~25%, while non-living matter may account for the rest.
显示更多 [+] 显示较少 [-]The Performance of Slurry Phase Reactors on the Treatment of Polycyclic Aromatic Hydrocarbons from Soils
2020
Gök, Gülden | Akıncı, Görkem
The contaminated Kaynaklar soil containing high level of diesel (100,000 mg/kg dw) was treated in slurry systems with solid-to-liquid ratios (S/L) of 1/5, 1/10, and 1/20 to describe the performance of physical treatment. The soil microbial mass was inhibited by using mercury chloride and autoclaving prior to the diesel spiking in order to eliminate any bacterial degradation of non-aqueous phase liquids (NAPLs) and has been treated in the reactor systems for 8 h. The removal performance of PAHs in soil slurry systems was evaluated according to the number of benzene rings: 3, 4, and 5and 6 ring PAHs. The experimental results showed that PAH treatment efficiency sharply decreases in slurry soils with increasing number of benzene rings; maximum treatment efficiencies in soil were 82%, 56%, and 42% for 3 ring (ACY), 4 ring (PY), and 5 and 6 ring (BbF) PAHs, respectively. In addition, a significant correlation between the PAH removal efficiencies and their vapor pressures has found. The impact of solid-to-liquid ratio on slurry system performance was found negligible; therefore, higher solid-to-liquid ratios are recommendable to be applied on the contaminated sites to remove high concentrations of PAHs from soil for reducing the investment and operational costs. The soil used in this study has relatively large specific surface area and considerable amount of clay. The removal performance of slurry systems may be elevated with sandy soils containing high concentrations of PAHs, where can be faced at the seashores due to the off shore oil spills.
显示更多 [+] 显示较少 [-]Investigation of potential safety hazards during medical waste disposal in SARS-CoV-2 testing laboratory
2021
Lv, Jun | Yang, Jin | Xue, Juan | Zhu, Ping | Liu, Lanfang | Li, Shan
This study aims to investigate the potential safety hazards and provide reference for improving the medical waste disposal procedure in SARS-CoV-2 testing laboratory. Our SARS-CoV-2 testing group detected the RNA residue on the surface of medical waste with Droplet Digital PCR, and held a meeting to discuss the risks in the laboratory medical waste disposal process. After effective autoclaving, SARS-CoV-2 contaminated on the surface of medical waste bags was killed, but the average concentration of viral RNA residues was still 0.85 copies/cm². It would not pose a health risk, but might contaminate the laboratory and affect the test results. When the sterilized medical waste bags were transferred directly by the operators without hand disinfection, re-contamination would happen, which might cause the virus to leak out of the laboratory. Furthermore, we found that sterilization effect monitoring and cooperation among operators were also very important. In summary, we investigated and analyzed the potential safety hazards during the medical waste disposal process in SARS-CoV-2 testing laboratory, and provided reasonable suggestions to ensure the safety of medical waste disposal.
显示更多 [+] 显示较少 [-]Effects of alkali, autoclaving, and Fe+ autoclaving pretreatment on anaerobic digestion performance of coking sludge from the perspective of sludge extracts and methane production
2021
Yang, Zhao | Kang, Xiaoyue | Chen, Ben | Qiu, Guanglei | Wei, Jingyue | Li, Fusheng | Wei, Chaohai
Pretreatment of activated sludge is an important step in increasing the reaction speed during anaerobic digestion by accelerating the hydrolysis process. It is necessary not only to analyze the changes in the general properties of the sludge before and after pretreatment but also to further analyze and evaluate the sludge structure and extracellular polymeric substances (EPS). In this study, the changes in coking sludge extracts after pretreatments with alkali, autoclaving, and Fe+ autoclaving were analyzed and compared using EPS heat extraction method. Moreover, the methane production potential of the pretreated coking sludge was investigated via biochemical methane potential (BMP) test. The results showed that after alkali, autoclaving, and Fe+ autoclaving, the concentration of protein and polysaccharide in the bound sludge extract accounted for approximately 40% and 28%, 62% and 51%, and 66% and 83% of the total protein and polysaccharide extracted from the sludge, respectively. In the experiment without pretreatment, there is no phenomenon of gas production from coking sludge. According to the BMP test results, Fe+ autoclaving pretreatment showed the highest methane production of 257 mL/gVSS. This study revealed that the analysis of sludge extracts was necessary in assessing the effects of anaerobic digestion pretreatment and methanogenic potential. Moreover, coking sludge showed higher methanogenic potential after Fe+ autoclaving pretreatment.
显示更多 [+] 显示较少 [-]Biosorption of Colour-Imparting Substances in Biologically Treated Pulp Mill Effluent Using Aspergillus niger Fungal Biomass
2011
Grainger, Sarah | Fu, George Yuzhu | Hall, Eric R.
Biosorption has potential to be an economical colour removal technology. As such, the colour removal potential of inactivated Aspergillus niger biomass was investigated for the treatment of activated sludge-treated pulp mill effluent from a northern bleached softwood kraft mill. Biomass pretreatment methods, effects of initial pH of the effluent and preparative biomass washing methods were examined. The most effective pretreatment method was found to be simple autoclaving of the biomass and this approach was applied in subsequent kinetic and isotherm batch studies. It was also found that the pH of the wastewater prior to addition of the biomass affected the biosorption rate and the solubility of chromophores in pulp mill effluent. The results also indicated that biomass washing methods reduced the quantity of organic matter leached from the fungal biomass during application. The kinetic study revealed that colour removal by biosorption occurred most readily in the first 8 h and could be described adequately by both the Lagergren and Ho et al. models. The maximum colour removal was over 900 TCU, with a biomass dose of about 20 g/L. The isotherm study data were fitted with the BET isotherm model. The results indicated that adsorption occurred in a multi-layer fashion and that physical adsorption was the main mechanism contributing to the biosorption. Therefore, dead A. niger biomass was concluded to be a promising alternative for colour removal from pulp mill effluent.
显示更多 [+] 显示较少 [-]The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands
2022
Xu, Zhouying | Li, Kaiguo | Li, Wenxuan | Wu, Chen | Chen, Xi | Huang, Jun | Zhang, Xiangling | Ban, Yihui
Inoculation with arbuscular mycorrhizal fungi (AMF) and additional aeration (AA), as two approaches to improve the functioning of treatment wetlands, can further promote the capacity of wetlands to purify pollutants. The extent to which, and mechanisms by which, AMF and AA purify wetlands polluted by combined heavy metals (HMs) are not well understood. In this study, the effects and mechanisms of AMF and/or AA on combined HMs removal in vertical flow constructed wetlands (VFCWs) with the Phragmites australis (reeds) were investigated at different HMs concentrations. The results showed that (1) AA improved the AMF colonization in VFCWs and AMF accumulated the combined HMs in their structures; (2) AMF inoculation and/or AA significantly promoted the reeds growth and antioxidant enzymes activities, thereby alleviating oxidative stress; (3) AMF inoculation and AA significantly enhanced the removal rates of Pb, Zn, Cu, and Cd under the stress of high combined HMs concentrations comparing to the control check (CK) treatment (autoclaved AMF inoculation and no aeration), which increased by 22.72%, 30.31%, 12.64%, and 50.22%, respectively; (4) AMF inoculation and/or AA significantly promoted the combined HMs accumulation in plant roots and substrates and altered the distribution of HMs at the subcellular level. We therefore conclude that AMF inoculation and/or AA in VFCWs improves the purification of combined HM-polluted water, and the VFCWs-reeds-AMF/AA associations exhibit great potential for application in remediation of combined HM-polluted wastewater.
显示更多 [+] 显示较少 [-]