细化搜索
结果 1-2 的 2
Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production
2021
Souza, Emerson F.C. | Rosen, Carl J. | Venterea, Rodney T.
Potato (Solanum tuberosum L.) production in irrigated coarse-textured soils requires intensive nitrogen (N) fertilization which may increase reactive N losses. Biological soil additives including N-fixing microbes (NFM) have been promoted as a means to increase crop N use efficiency, though few field studies have evaluated their effects, and none have examined the combined use of NFM with microbial inhibitors. A 2-year study (2018–19) in an irrigated loamy sand quantified the effects of the urease inhibitor NBPT, the nitrification inhibitor DMPSA, NFM, and the additive combinations DMPSA + NBPT and DMPSA + NFM on potato performance and growing season nitrous oxide (N₂O) emissions and nitrate (NO₃⁻) leaching. All treatments, except a zero-N control, received diammonium phosphate at 45 kg N ha⁻¹ and split applied urea at 280 kg N ha⁻¹. Compared with urea alone, DMPSA + NBPT reduced NO₃⁻ leaching and N₂O emissions by 25% and 62%, respectively, and increased crop N uptake by 19% in one year, although none of the additive treatments increased tuber yields. The DMPSA and DMPSA + NBPT treatments had greater soil ammonium concentration, and all DMPSA-containing treatments consistently reduced N₂O emissions, compared to urea-only. Use of NBPT by itself reduced NO₃⁻ leaching by 21% across growing seasons and N₂O emissions by 37% in 2018 relative to urea-only. In contrast to the inhibitors, NFM by itself increased N₂O by 23% in 2019; however, co-applying DMPSA with NFM reduced N₂O emissions by ≥ 50% compared to urea alone. These results demonstrate that DMPSA can mitigate N₂O emissions in potato production systems and that DMPSA + NBPT can reduce both N₂O and NO₃⁻ losses and increase the N supply for crop uptake. This is the first study to show that combining a nitrification inhibitor with NFM can result in decreased N₂O emissions in contrast to unintended increases in N₂O emissions that can occur when NFM is applied by itself.
显示更多 [+] 显示较少 [-]Guluronic acid content as a factor affecting turbidity removal potential of alginate
2016
Kıvılcımdan Moral, Çiğdem | Ertesvåg, Helga | Sanin, F Dilek
Alginates are natural polymers composed of mannuronic and guluronic acid residues. They are currently extracted from brown algae; however, alginate can also be synthesized by some species of Azotobacter and Pseudomonas. Alginates with different proportion of mannuronic and guluronic acids are known to have different characteristics and form gels at different extents in the presence of calcium ions. The aim of this work was to investigate the usefulness of alginate as a non-toxic coagulant used in purification of drinking water. This study utilized alginates from Azotobacter vinelandii having different guluronic acid levels. These were obtained partly by changing the cultivation parameters, partly by epimerizing a purified alginate sample in vitro using the A. vinelandii mannuronan C-5 epimerase AlgE1. The different alginates were then used for coagulation together with calcium. The results showed that turbidity removal capability was dependent on the content of guluronic acid residues. For the best performing samples, the turbidity decreased from 10 NTU to 1 NTU by the use of only 2 mg/L of alginate and 1.5 mM of calcium chloride.
显示更多 [+] 显示较少 [-]