细化搜索
结果 1-7 的 7
Screening and validation of biomarkers for cadmium-induced liver injury based on targeted bile acid metabolomics
2022
Tian, Meng | Yan, Jun | Zhang, Honglong | Wei, Yuhui | Zhang, Mingtong | Rao, Zhi | Zhang, Mingkang | Wang, Haiping | Wang, Yanping | Li, Xun
Although cadmium (Cd) is a toxic heavy metal that reportedly causes liver injury, few studies have investigated biomarkers of Cd-induced liver injury. The purpose of this study is to investigate the role of bile acid (BA) in Cd-induced liver injury and determine reliable and sensitive biochemical parameters for the diagnosis of Cd-induced liver injury. In this study, 48 Sprague-Dawley rats were randomly divided into six groups and administered either normal saline or 2.5, 5, 10, 20, and 40 mg/kg/d cadmium chloride for 12 weeks. A total of 403 subjects living in either a control area (n = 135) or Cd polluted area (n = 268) of Dongdagou-Xinglong (DDGXL) cohort were included, a population with long-term low Cd exposure. The BA profiles in rats' liver, serum, caecal contents, faeces, and subjects' serum were detected using high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). Changes in rats' and subjects' liver injury indices, rats' liver pathological degeneration, and rats' liver and subjects’ blood Cd levels were also measured. Cadmium exposure caused cholestasis and an increase in toxic BAs, leading to liver injury in rats. Among them, glycoursodeoxycholic acid (GUDCA), glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), and taurodeoxycholate acid (TDCA) are expected to be potential biomarkers for the early detect of Cd-induced liver injury. Serum BAs can be used to assess Cd-induced liver injury as a simple, feasible, and suitable method in rats. Serum GUDCA, GLCA, TDCA, and TLCA were verified to be of value to evaluate Cd-induced liver injury and Cd exposure in humans. These findings provided evidence for screening and validation of additional biomarkers for Cd-induced liver injury based on targeted BA metabolomics.
显示更多 [+] 显示较少 [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
显示更多 [+] 显示较少 [-]Monitoring air quality can help for lakes excessive proliferation of phytoplankton control
2021
Zhang, Chengxiang | Pei, Hongcui | Liu, Cunqi | Wang, Wei | Lei, Guangchun
Previous studies assessing excessive proliferation of phytoplankton (EPP) in lakes are generally based on single investigation and focused on limited environmental factors; meanwhile, less attention has been paid to lakes susceptibility to EPP. Here, we identify the priority of lakes for EPP control in a basin by assessing EPP in multiple lakes and identify the key factors related to lakes’ vulnerability to EPP. Field measurements, as well as multi-source survey data acquisition were conducted for 63 shallow lakes in the middle-lower Yangtze River basin. Resource-use efficiency by phytoplankton (RUE) was then used to represent lake susceptibility to EPP. Generalized linear models were used to assess the relative importance of environmental factors for RUE. We found that most lakes (76.19 %) were not suitable for recreation, due to health concern attributed to irritative or allergenic risk caused by EPP. Phosphorus was the primary limiting nutrient for EPP (74.60 % of lakes) which should be limited to < 0.09 mg/L. The linear model that included latitude, particulate matter 10, and precipitation explained 27.60 % of the variation of RUETP among lakes. In contrast, the linear model that included ozone, Secchi depth, and wind speed explained 19.41 % of the variation of RUETN among lakes. The key factor related to RUETP and RUETN was particulate matter 10 and ozone, respectively, both of which potentially increase RUE or reflect it. Our results suggest that integrating multiple survey datasets is critical for lakes EPP assessment in a basin, while lakes impacted by air pollution are a high priority for EPP control.
显示更多 [+] 显示较少 [-]Weathering steel as a potential source for metal contamination: Metal dissolution during 3-year of field exposure in a urban coastal site
2016
Raffo, Simona | Vassura, Ivano | Chiavari, Cristina | Martini, Carla | Bignozzi, Maria C. | Passarini, Fabrizio | Bernardi, Elena
Surface and building runoff can significantly contribute to the total metal loading in urban runoff waters, with potential adverse effects on the receiving ecosystems. The present paper analyses the corrosion-induced metal dissolution (Fe, Mn, Cr, Ni, Cu) from weathering steel (Cor-Ten A) with or without artificial patinas, exposed for 3 years in unsheltered conditions at a marine urban site (Rimini, Italy). The influence of environmental parameters, atmospheric pollutants and surface finish on the release of dissolved metals in rain was evaluated, also by means of multivariate analysis (two-way and three-way Principal Component Analysis). In addition, surface and cross-section investigations were performed so as to monitor the patina evolution. The contribution provided by weathering steel runoff to the dissolved Fe, Mn and Ni loading at local level is not negligible and pre-patination treatments seem to worsen the performance of weathering steel in term of metal release. Metal dissolution is strongly affected by extreme events and shows seasonal variations, with different influence of seasonal parameters on the behaviour of bare or artificially patinated steel, suggesting that climate changes could significantly influence metal release from this alloy. Therefore, it is essential to perform a long-term monitoring of the performance, the durability and the environmental impact of weathering steel.
显示更多 [+] 显示较少 [-]Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction
2019
Xia, Bin | Zhou, Yuhan | Zhu, Qingyang | Zhao, Yingya | Wang, Ying | Ge, Wenzhen | Yang, Qing | Zhao, Yan | Wang, Pengpeng | Si, Jingyi | Luo, Ranran | Li, Jialin | Shi, Huijing | Zhang, Yunhui
Ambient fine particulate matter (PM2.5) pollution has been implicated in the development of hypertensive disorders of pregnancy. However, evidence on the effects of PM2.5-derived chemical constituents on gestational blood pressure (BP) is limited, and the potential mechanisms underlying the association remain unclear. In this study, we repeated three consecutive 72-h personal air sampling and BP measurements in 215 pregnant women for 590 visits during pregnancy. Individual PM2.5 exposure level was assessed by gravimetric method and 28 PM2.5 chemical constituents were analyzed by ED-XRF method. Plasma biomarkers of endothelial function and inflammation were measured using multiplexed immunoassays. Robust multiple linear regression models were used to estimate the associations among personal PM2.5 exposure and chemical constituents, BP changes (compared with pre-pregnancy BP) and plasma biomarkers. Mediation analyses were performed to evaluate underlying potential pathways. Result showed that exposure to PM2.5 was significantly associated with increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) in the early second trimester. Meanwhile, elevated concentration of lead (Pb) constituent in PM2.5 was significant associated with increases in DBP and MAP after adjusting for PM2.5 total mass. PM2.5 and Pb constituent also presented positive associations with plasma biomarkers of endothelial function (ET-1, E-selectin, ICAM-1) and inflammation (IL-1β, IL-6, TNFα) significantly. After multiple adjustment, elevated ET-1 and IL-6 were significantly correlated with increased gestational BP, and respectively mediated 1.24%–25.06% and 7.01%–10.69% of the increased BP due to PM2.5 and Pb constituent exposure. In conclusion, our results suggested that personal exposure to PM2.5 and Pb constituent were significantly associated with increased BP during pregnancy, and the early second trimester might be the sensitive window of PM2.5 exposure. The endothelial dysfunction and elevated inflammation partially mediated the effect of PM2.5 and Pb constituent on BP during pregnancy.
显示更多 [+] 显示较少 [-]Linking otolith microchemistry and surface water contamination from natural gas mining
2018
Keller, David H. | Zelanko, Paula M. | Gagnon, Joel E. | Horwitz, Richard J. | Galbraith, Heather S. | Velinsky, David J.
Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01–1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW.
显示更多 [+] 显示较少 [-]Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review
2015
Binelli, A. | Della Torre, C. | Magni, S. | Parolini, M.
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail, we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
显示更多 [+] 显示较少 [-]