细化搜索
结果 1-6 的 6
IPM-recommended insecticides harm beneficial insects through contaminated honeydew
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrusvladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew.
显示更多 [+] 显示较少 [-]Validation and application of a modified QuEChERS method for extracting neonicotinoid residues from New Zealand maize field soil reveals their persistence at nominally hazardous concentrations
2019
Pook, Chris | Gritcan, Iana
The widespread use of neonicotinoid insecticides is controversial due to their persistence in the environment and concerns the long-term consequences of their use. We present a simple, low-cost method for the sensitive and efficient extraction of three important neonicotinoids from soil with a detection limit <1 ng g−1 wet soil. We have validated this method by applying it to uncontaminated soil samples spiked with thiamethoxam, clothianidin and imidacloprid at environmentally concentrations. Absolute recoveries were >80% for thiamethoxam, clothianidin and imidacloprid. We also applied the method to soil samples collected from maize fields in New Zealand's North Island and found imidacloprid in 43 out of 45 samples and clothianidin in every one. Mean imidacloprid concentrations varied from 0.5 to 9.4 ng g−1 (wet weight) and clothianidin from 2.1 to 26.7 ng g−1 (wet weight). Imidacloprid concentrations exceed the New Zealand Environmental Protection Agency's Environmental Exposure Limit of 1 ng g−1 (dry weight) at eight of the nine sites sampled. These results are also remarkable because we have detected multiple neonicotinoid residues at every site. Imidacloprid residues appear to persist at significant concentrations at five of our sites from an application at least two years previous. This is only the third study to report the presence of neonicotinoid residues in NZ's environment and the first to show that those residues are persistent in the environment at nominally hazardous concentrations.
显示更多 [+] 显示较少 [-]Comparative susceptibility of two Neotropical predators, Eriopis connexa and Chrysoperla externa, to acetamiprid and pyriproxyfen: Short and long-term effects after egg exposure
2017
Rimoldi, Federico | Fogel, Marilina N. | Ronco, Alicia E. | Schneider, Marcela I.
Compatibility assessments between selective insecticides and the natural enemies of pests are essential for integrated-pest-management programs. Chrysoperla externa and Eriopis connexa are two principal Neotropical predators of agricultural pests whose conservation in agroecosystems requires a toxicity evaluation of pesticides to minimize the impact on those beneficial insects on the environment. The objective of this work was to evaluate the toxicity of the insecticides pyriproxyfen and acetamiprid on C. externa and E. connexa eggs exposed to the maximum recommended field concentrations of each along with three successive dilutions. The survival and the immature developmental time were assessed daily until adulthood and the mean survival time calculated over a 10-day period. The cumulative survival of E. connexa was reduced at all concentrations of both insecticides, while that of C. externa was significantly decreased by ≥50 mg L⁻¹ of acetamiprid and ≥37.6 mg L⁻¹ of pyriproxyfen. In both species, the reductions occurred principally on the eggs and first larval instar. Survival curves, in general, differed from those of the controls, with the mean survival time of E. connexa being significantly shorter in insecticides treatments than that of the controls. Certain concentrations of each of the insecticide lengthened the egg and first-larval-instar developmental periods of E. connexa and C. externa, respectively. Also, pyriproxyfen reduced the first-larval-instar period and lengthened the fourth of E. connexa. Acetamiprid was more toxic to E. connexa than to C. externa at the two highest concentrations. Conversely, at those same concentrations of pyriproxyfen, the relative toxicity to the two species was reversed. The present work represents the first investigation on the comparative susceptibility of two relevant Neotropical biological control agents to acetamiprid and pyriproxyfen. Also, it highlights the necessity of assessing long-term effects in the compatibility studies between natural enemies of agricultural pests and insecticides.
显示更多 [+] 显示较少 [-]Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects
2018
Vasantha-Srinivasan, Prabhakaran | Thanigaivel, Annamalai | Edwin, Edward-Sam | Ponsankar, Athirstam | Senthil-Nathan, Sengottayan | Selin-Rani, Selvaraj | Kalaivani, Kandaswamy | Hunter, WayneB. | Duraipandiyan, Veeramuthu | Al-Dhabi, NaifAbdullah
Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The mosquito, Aedes aegypti, also spreads Yellow fever, Chikungunya, and Zika virus. As the primary vector for dengue, Ae. aegypti now occurs in over 20 countries and is a serious concern with reports of increasing insecticide resistance. Developing new treatments to manage mosquitoes are needed. Formulation of crude volatile oil from Piper betle leaves (Pb-CVO) was evaluated as a potential treatment which showed larvicidal, ovipositional, and repellency effects. Gut-histology and enzyme profiles were analyzed post treatment under in-vitro conditions. The Pb-CVO from leaves of field collected plants was obtained by steam distillation and separated through rotary evaporation. The Pb-CVO were evaluated for chemical constituents through GC-MS analyses revealed 20 vital compounds. The peak area was establish to be superior in Eudesm-7(11)-en-4-ol (14.95%). Pb-CVO were determined and tested as four different concentrations (0.25, 0.5, 1.0, and 1.5 mg/L) of Pb-CVO towards Ae. aegypti. The larvicidal effects exhibited dose dependent mortality being greatest at 1.5 mg Pb-CVO/10 g leaves. The LC₅₀ occurred at 0.63 mg Pb-CVO/L. Larva of Ae. aegypti exposed to Pb-CVO showed significantly reduced digestive enzyme actions of α- and β-carboxylesterases. In contrast, GST and CYP450 enzyme levels increased significantly as concentration increased. Correspondingly, oviposition deterrence index and egg hatch of Ae. aegypti exposed to sub-lethal doses of Pb-CVO demonstrated a strong effect suitable for population suppression. Repellency at 0.6 mg Pb-CVO applied as oil had a protection time of 15–210 min. Mid-gut histological of Ae. aegypti larvae showed severe damage when treated with 0.6 mg of Pb-CVO treatment compared to the control. Non-toxic effects against aquatic beneficial insects, such as Anisops bouvieri and Toxorhynchites splendens, were observed at the highest concentrations, exposed for 3 h. These results suggest that the Pb-CVO may contain effective constituents suitable for development of new vector control agents against Ae. aegypti.
显示更多 [+] 显示较少 [-]Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect
2016
Lalouette, Lisa | Pottier, Marie-Anne | Wycke, Marie-Anne | Boitard, Constance | Bozzolan, Françoise | Maria, Annick | Demondion, Elodie | Chertemps, Thomas | Lucas, Philippe | Renault, David | Maibeche, Martine | Siaussat, David
Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive—also called hormetic—effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure.
显示更多 [+] 显示较少 [-]Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae)
2016
Dewer, Youssef | Pottier, Marie-Anne | Lalouette, Lisa | Maria, Annick | Dacher, Matthieu | Belzunces, L. P. (Luc P.) | Kairo, Guillaume | Renault, David | Maibeche, Martine | Siaussat, David
Insecticides have long been used as the main method in limiting agricultural pests, but their widespread use has resulted in environmental pollution, development of resistances, and biodiversity reduction. The effects of insecticides at low residual doses on both the targeted crop pest species and beneficial insects have become a major concern. In particular, these low doses can induce unexpected positive (hormetic) effects on pest insects, such as surges in population growth exceeding what would have been observed without pesticide application. Methomyl and chlorpyrifos are two insecticides commonly used to control the population levels of the cotton leafworm Spodoptera littoralis, a major pest moth. The aim of the present study was to examine the effects of sublethal doses of these two pesticides, known to present a residual activity and persistence in the environment, on the moth physiology. Using a metabolomic approach, we showed that sublethal doses of methomyl and chlorpyrifos have a systemic effect on the treated insects. We also demonstrated a behavioral disruption of S. littoralis larvae exposed to sublethal doses of methomyl, whereas no effects were observed for the same doses of chlorpyrifos. Interestingly, we highlighted that sublethal doses of both pesticides did not induce a change in acetylcholinesterase activity in head of exposed larvae.
显示更多 [+] 显示较少 [-]