细化搜索
结果 1-10 的 39
Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas
2019
Liao, Chunyang | Shi, Jianbo | Wang, Xiaoyun | Zhu, Qingqing | Kannan, Kurunthachalam
Despite high production and usage of parabens and bisphenols, little is known about their spatiotemporal distribution in the marine environment. In this study, we determined the concentrations of several parabens and their metabolites as well as bisphenol analogues in sediment collected from coastal areas of northern China. All sediment samples, including surface sediment and sediment cores, contained at least one of the parabens analyzed, and the total concentrations of parabens (ΣPBs; sum of six parabens) ranged from 1.37 to 24.2 ng/g dw (geometric mean: 3.30–6.09 g/g dw), which was comparable to or slightly higher than those found for the total concentrations of five detectable bisphenols (ΣBPAs; geometric mean: 2.18–4.61 ng/g dw). 4-hydroxybenzoic acid, a common metabolite of parabens, was found in all samples at concentrations in the range of 6.85–437 ng/g dw, which was one order of magnitude lower than those found for benzoic acid. Methyl-, ethyl-, and propyl-parabens were the predominant paraben analogues, collectively accounting for >88% of ΣPBs. Bisphenol A and bisphenol F were the two major bisphenols, collectively accounting for >86% of ΣBPAs. We also examined vertical profiles in concentrations of target analytes in sediment cores. The sediment core from the Shandong Peninsula showed a gradual increase in the concentrations of several parent and metabolic parabens as well as bisphenols during the past decade. Relatively higher concentrations of parabens and bisphenols were found in sediment cores collected from industrialized areas. Significant positive correlations were found among the concentrations of parabens in sediment, which suggested the existence of similar sources for these compounds. Overall, our findings suggest that the Bohai Sea coast is moderately contaminated with parabens and bisphenols in comparison to other coastal areas in China or elsewhere.
显示更多 [+] 显示较少 [-]Biodegradation of phthalate esters by Paracoccus kondratievae BJQ0001 isolated from Jiuqu (Baijiu fermentation starter) and identification of the ester bond hydrolysis enzyme
2020
Xu, Youqiang | Minhazul, Karim A.H.M. | Wang, Xiaocheng | Liu, Xiao | Li, Xiuting | Meng, Qi | Li, Hehe | Zhang, Chengnan | Sun, Xiaotao | Sun, Baoguo
Phthalate ester (PAE) pollution is an increasing problem globally. Paracoccus kondratievae BJQ0001 was isolated from the fermentation starter of Baijiu and showed an efficient degradation capability toward PAEs. To our poor knowledge, this is the first report of a P. kondratievae strain capable of degrading PAEs. The first complete genome sequence of P. kondratievae was presented without gaps, and composed of two circular chromosomes and one plasmid. The species simultaneously degraded di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-butyl phthalate (DBP), di-isobutyl phthalate (DIBP) and di-(2-ethylhexyl) phthalate (DEHP), with DMP and DEP as the preferred substrates. The half-life (t₁/₂) of DMP was only 6.34 h with an initial concentration of 200 mg/L. Combined with gene annotation and metabolic intermediate analysis, a metabolic pathway was proposed for the species. Benzoic acid, the intermediate of anaerobic PAE metabolism, was identified in the aerobic degradation process. Two key enzymes for alkyl ester bond hydrolysis were obtained, and belonged to families IV and VI of hydrolases, respectively. These results will promote the investigation of PAE degradation by P. kondratievae, and provide useful information for improving the quality control of food and environmental PAE treatment.
显示更多 [+] 显示较少 [-]Oxidation of benzoic acid from biomass burning in atmospheric waters
2019
Santos, Patrícia S.M. | Cardoso, Helena B. | Rocha-Santos, Teresa A.P. | Duarte, Armando C.
This work evaluates the degradation of benzoic acid, a tracer from biomass burning, by different oxidation agents (Fe (III); H₂O₂; sunlight; and combinations of the previous ones) in model solutions and in real atmospheric waters. The extent of reactions was assessed by Ultraviolet–Visible and molecular fluorescence spectroscopies. The oxidation of benzoic acid occurred with the chemical oxidants Fe (III), H₂O₂, Fe (III) and H₂O₂ simultaneously in the presence of sunlight, and with Fe (III) and H₂O₂ simultaneously in the absence of light. The decrease of the pH value from neutral to acid for atmospheric waters generally increased the extent of oxidation. Sunlight was an important oxidation agent, and its combination with chemical oxidants increased the oxidation rate of benzoic acid, possibly due to the photogeneration of hydroxyl radicals. The results also suggested the occurrence of direct and indirect photolysis of benzoic acid in atmospheric waters. Moreover, the oxidation of benzoic acid produced new and more complex chromophoric compounds, which were then degraded. In addition, the nocturnal period is not sufficient for the full degradation of benzoic acid and of the intermediates formed by Fenton-like oxidation. The diurnal period may be enough for their full degradation through photo-Fenton-like oxidation, but this depends on the composition of the atmospheric waters, namely of the chromophoric content. Thus, this study highlights that benzoic acid from biomass burning, and its derivatives, may persist in atmospheric waters for periods of longer than one day, becoming available for other reactions, and may also affect the terrestrial and aquatic ecosystems through the wet depositions.
显示更多 [+] 显示较少 [-]Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids
2016
Zhang, Fan | Wang, Zhuang | Wang, Se | Fang, Hao | Chen, Mindong | Xu, Defu | Tang, Lili | Wang, Degao
Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size. LOA interaction with nY2O3 is shown to promote the release of dissolved yttrium from the nanoparticles, depending on the concentrations of LOAs. Toxic effects of the nY2O3 suspensions incubated with LOAs on Scenedesmus obliquus as a function of their mixture levels show three types of signs: stimulation, inhibition, and alleviation. The mechanism of the effects of LOAs on the nY2O3 toxicity may be mainly associated with the degree of agglomeration, particle-induced oxidative stress, and dissolved yttrium. Our results stressed the importance of LOA impacts on the fate and toxicity of ENPs in the aquatic environment.
显示更多 [+] 显示较少 [-]Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17
2022
Baek, Ju Hye | Kim, Kyung Hyun | Lee, Yun Hee | Jeong, Sang Eun | Jin, Hyun Mi | Jia, Baolei | Jeon, Che Ok
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
显示更多 [+] 显示较少 [-]In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions
2022
Li, Long | Dong, Haoran | Lü, Yue | Zhang, Haoxuan | Li, Yangju | Xiao, Junyang | Xiao, Shuangjie | Jin, Zilan
The bacteria toxicity of nanoscale zero-valent iron (nZVI) can be changed during its application in water treatment but the toxicity mechanism is still not well understood, particularly under anaerobic conditions. Here, the toxicity of nZVI and its aging products towards Escherichia coli (E. coli) and the mechanisms of extracellular and intracellular reactive oxygen species (ROS) damage were deeply probed in the presence and absence of oxygen in ultrapure water. Under aerobic conditions, the ROS damage primarily caused by the generation of extracellular free •OH can be a major contributor to the toxicity of nZVI to E. coli. By contrast, in anaerobic nZVI treatment system, the intracellular •OH can be quenched by benzoic acid which is a cell permeable quencher and the electron spin resonance (ESR) signals of 5,5-dimethy-1-pyrroline (DMPO)- •OH were evidently observed in system with the addition of F⁻ which could desorb the surface •OH into solution. It indicated that the intracellular •OH adsorbed on the particle surface can also play an indispensable role in inactivating cells under anaerobic conditions. Moreover, nZVI can steeply decline the membrane potential, causing severe membrane disruption and therefore resulting in the stronger toxicity in anaerobic conditions. Furthermore, the chemical composition transformation of nZVI and generation of benign iron corrosion products (e.g., Fe₃O₄, γ-Fe₂O₃, γ-FeOOH) are mainly responsible for the reduced toxicity with the increasing aging time. These results provide insights into the extracellular and intracellular ROS damage occurred in aerobic and anaerobic nZVI treatment systems, offering more perspective to the risk assessment of nZVI application.
显示更多 [+] 显示较少 [-]Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil
2011
Hybholt, Trine K. | Aamand, Jens | Johnsen, Anders R.
The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of ¹⁴C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm³. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7×11cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates.
显示更多 [+] 显示较少 [-]Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03
2020
Al Farraj, Dunia Abdulaziz | Hadibarata, Tony | Elshikh, Mohamed Soliman | Al Khulaifi, Manal M. | Kristanti, Risky Ayu
Pyrene, a toxic four-benzene-ring that persists in the ecosystem, is highly resistant to degradation. The goal of the research is to screen, isolate, and identify pyrene-degrading filamentous fungi via the molecular biological identification method. The capabilities of identified isolates in biodegradation and transformation of pyrene were also evaluated. Based on the morphological characterization and sequence alignments, results of neighbor-joining phylogenetic tree from 18S rRNA of F03 revealed that genetic similarity had achieved 99% of homology percentage and identified as Trichoderma sp. Trichoderma sp. F03 was able to degrade pyrene (78%) when culture conditions were set at 100 mg/L initial pyrene concentration in culture medium with pH 5 at 27 °C, the use of glucose as a carbon source and polyethylene glycol sorbitan monooleate as a biosurfactant without agitation. Finally, three metabolites, benzoic acid, 3-hydroxybenzoic acid, and acetic acid, were detected during the pyrene degradation process by using gas chromatography–mass spectrometry (GCMS).
显示更多 [+] 显示较少 [-]Oxidative Degradation of EDTA in Aqueous Solution by the Bimetallic Fe–Cu
2013
Liu, Xin | Fan, Jin-Hong | Ma, Luming
Oxidative degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution at normal temperature and pressure by the bimetallic Fe–Cu was investigated in this work. The results showed that the removal efficiency of EDTA, total organic carbon (TOC), and total nitrogen (TN) could be about 95, 62.5, and 39 %, respectively, after 3-h reaction. The degradation of EDTA followed the pseudo-first-order reaction kinetics and would not be affected by the continuous use of bimetallic Fe–Cu. The degradation products were iminodiacetate, formate, and acetate determined by ion chromatogram. The effects of initial pH, initial concentration of EDTA, Cu content, Fe–Cu loading, and atmosphere were also investigated. Significantly, the bimetallic Fe–Cu process exhibited higher reactivity than ZEA process for the degradation of EDTA and it would not cause new heavy metal pollution in effluent. Reactive oxygen species (ROS) of OH was generated in situ. The evidence of oxidative degradation of EDTA was verified by electron spin resonance (ESR) spectroscopy and the product of para-hydroxybenzoic acid (p-HBA) by OH and benzoic acid (BA).
显示更多 [+] 显示较少 [-]In situ remediation of 2,4-dicholrophenoxyacetic acid herbicide using amine-functionalized imidazole coordination complexes
2021
Mansab, Saira | Rafique, Uzaira
Demand of clean water is always a major concern due to continuous use of toxic pesticides and herbicides to overcome food scarcity. In Asian countries, wide use of ionizable 2,4-D herbicide has worsen problem due to its less binding ability with soil and can easily contaminate drinking water that causes potential risks to humans and environment. The present research focused on synthesis of amino-factionalized coordination complexes using imidazole-based amino benzoic acid ligands for remediation of acidic 2,4-D herbicide. Coordination complexes characterized with FTIR, ¹H-NMR, elemental analysis, thermogravimetric analysis, powder XRD, and BET revealed successful incorporation of functionalized groups with high thermal stability and surface area that make them suitable for adsorption experiments. Batch adsorption experiments conducted at different temperature conditions depicted the spontaneous physisorption process (− ∆G) having endothermic nature (∆H, ∆S). The removal efficiency of the amino-functionalized coordination complex is found to be higher (73%) compared to non-functionalized (35%) and acetic anhydride-functionalized coordination complex (42%). Kinetic studies supported pseudo 2nd-order kinetics with three phases of adsorption depicted by intra-particle diffusion model. Amino-functionalized complexes favored Langmuir isotherm while Freundlich isotherm is best fitted for non-functionalized complexes. The synthesized adsorbents were also proven to be effective for removal of herbicide from irrigated wastewater with average percent removal of 56% for amino functionalized, acetic anhydride functionalized (23%), and non-functionalized (20%).
显示更多 [+] 显示较少 [-]