细化搜索
结果 1-10 的 41
Effect of increasing ozone and carbon dioxide on photosynthetic and related biochemical properties of two silver birch clones during three years of exposure
2002
Riikonen, J. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station) | Holopainen, T. | Oksanen, E. | Vapaavuori, E.
Under elevated CO2 photosynthesis was 15-50% higher than in chamber controls depending on the weather conditions of the growing seasons. When measured at 360 ppm CO2 both elevated CO2 and elevated CO2 + O3 treatments decreased net photosynthesis, stomatal conductance and also transpiration, indicating downregulation of photosynthesis at elevated CO2
显示更多 [+] 显示较少 [-]Response of subarctic tree seedlings to solar UV radiation
2002
Turunen, M. (University of Lapland, Rovaniemi (Finland). Arctic Centre) | Suttinen, M. L. | Derome, K. | Norokorpi, Y. | Lakkala, K.
The response of Betula pubescens Ehr., B. pendula Roth and two provenances of Pinus sylvestris L. to solar ultraviolet radiation were investigated in a UV exclusion field experiment during the 1997-1999 growing seasons in Finnish Lapland. The seed-grown seedlings were grown under UV-B exclusion and UV-B/UV-A exclusion as compared to control treatment and ambient plants. The only significant impacts of UV exclusion were found in P. sylvestris provenance Enontekio. Longer-term field studies are needed to detect the cumulative characteristics of the UV responses
显示更多 [+] 显示较少 [-]Consequences of elevated CO2 and O3 on birch canopy structure
2002
Kull, O. (University of Tartu, Tartu (Estonia). Institute of Botany and Ecology) | Tulva, I. | Vapaavuori, E.
We studied elevated CO2 and ozone effects in single and in combination on crown structure of two Betula pendula clones. Shoot ramification, shoot length, number of metamers, leaves and buds were measured at four heights in every tree. Chamber effect was substantial on sylleptic branching and on shoot length and ramification. However these responses differed between the clones. Ozone treatment affected shoot length and caused slight decrease in shoot ramification. Elevated CO2 affected appearance of long shoots in complex manner, but in lower crown positions CO2 caused increased number of long shoots in both clones
显示更多 [+] 显示较少 [-]Effects of elevated CO2 and O3 on silver birch rhizosphere and leaf litter decomposition
2002
Kasurinen, A. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environmental Science) | Vapaavuori, E. | Holopainen, J. K. | Holopainen, T.
There is still limited amount of information about the long-term and interactive effects of increased CO2 and O3 levels on larger forest trees growing under natural or semi-natural conditions. Elevated CO2 and O3 might affect the quality and quantity of leaf litter produced and thus change litter decomposition rates and nutrient cycling in the forest ecosystems severely. In this long-term field experiment we studied the effects of realistically increased CO2 and O3 levels on fine root and mycorrhiza growth in ozone-tolerant and ozone-sensitive silver birch clones by root ingrowth core method. We measured rhizosphere soil CO2 efflux plus assessed the total fungal biomass of fine roots and soil by ergosterol analysis
显示更多 [+] 显示较少 [-]Physiological ozone responses of birch (Betula pendula Roth) differ between soil-growing trees in a multi-year exposure and potted saplings in a single-season exposure
2002
Oksanen, E. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environemntal Science)
Increased ozone sensitivity of larger soil-growing trees with growth in the multi-year exposure was a result of several interactive senescence-related physiological factors: lower net photosynthesis to stomatal conductance ratio at the end of the growing season promoted high ozone uptake and low photosynthetic carbon gain, leading to onset of visible injuries and impaired bud formation. This was expected to affect negatively the early growth of the next year foliage, This clone showed a major change in allocation pattern during the early ontogeny at the expense of foliage growth towards the stem height increase
显示更多 [+] 显示较少 [-]Growth responses of two silver birch clones to elevated CO2 and O3 during three years of exposure in OTCs
2002
Riikonen, J. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station) | Lindsberg, M. M. | Peltonen, P. | Oksanen, E. | Syrjala, L. | Holopainen, T. | Vapaavuori, E.
Atmospheric carbon dioxide (CO2) and ozone (O3) are increasing by 1-2% per year and are expected to double by the year 2100 compared to the end of the last millennium. Carbon dioxide at twice the current atmospheric concentrations has the potential to increase the productivity of forest trees while increasing ozone is expected to cause significant reductions in growth. The present study was undertaken to investigate the effects of CO2 and O3, singly or in combination, on growth and allocation of two European silver birch (Betula pendula Roth) clones under field conditions to verify the future predicitons in regard to silver birch. Our data show that growth of clone 80 was benefitted by ambient CO2 singly and in combination with ambient O3. Clone 4 was more responsive to ambient O3 than clone 80 which is opposite to results from previous pot experiments with these clones
显示更多 [+] 显示较少 [-]Assessment of the ability of roadside vegetation to remove particulate matter from the urban air
2021
Kończak, B. | Cempa, M. | Pierzchała, Ł | Deska, M.
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes.Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula ‘Youngii’, Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
显示更多 [+] 显示较少 [-]Uptake of ozone and modification of lipids in Betula Pendula pollen
2018
Zhu, Chao | Farah, Jinane | Choël, Marie | Gosselin, Sylvie | Baroudi, Moomen | Petitprez, Denis | Visez, Nicolas
Pollen allergy risk is modified by air pollutants, including ozone, but the chemical modifications induced on pollen grains are poorly understood. Pollen lipidic extract has been shown to act as an adjuvant to the allergenic reaction and therefore, the modification of lipids by air pollutants could have health implications. Birch pollen was exposed in vitro to ozone to explore the reactivity of O₃ on its surface and on its lipidic fraction. Uptake coefficients of ozone were determined for ozone concentration of 117 ppb on the surface of native birch pollen (8.6 ± 0.8 × 10⁻⁶), defatted pollen (9.9 ± 0.9 × 10⁻⁶), and for crushed pollen grains (34±3 × 10⁻⁶). The mass of ozone uptaken was increased by a factor of four for crushed pollen compared to native pollen showing a higher susceptibility to ozone of cytoplasmic granules and broken pollen grains. A total mass of extractible lipids of 27 mg per gram of birch pollen was found and a fraction of these lipids was identified and quantified (fatty acids, alkanes, alkenes and aldehydes). The distribution of lipids was modified by ozone exposure of 115 and 1000 ppb for 16 h with the following reactivity: consumption of alkene, formation of aldehydes and formation of nonanoic acid and octadecanoic acid. The quantity of ozone trapped in the lipidic fraction during 15 min at 115 ppb is enough to contribute to the reactivity of one-third of the alkenes demonstrating that pollen could be susceptible to an atmospheric increase of ozone concentration even for a very short duration complicating the understanding of the link between pollen allergy and pollution.
显示更多 [+] 显示较少 [-]Effect of air pollutant NO2 on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity
2014
Cuinica, Lázaro G. | Abreu, Ilda | Esteves da Silva, Joaquim
Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) – both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins.
显示更多 [+] 显示较少 [-]Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community
2009
Tervahauta, Arja I. | Fortelius, Carola | Tuomainen, Marjo | Akerman, Marja-Leena | Rantalainen, Kimmo | Sipilä, Timo | Lehesranta, Satu J. | Koistinen, Kaisa M. | Kärenlampi, Sirpa | Yrjälä, Kim
Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p <= 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils. Birch can enhance degradation of PAH compounds in the rhizosphere.
显示更多 [+] 显示较少 [-]