细化搜索
结果 1-10 的 56
The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.)
2020
Zhan, Juan | Huang, Huagang | Yu, Haiying | Zhang, Xizhou | Zheng, Zicheng | Wang, Yongdong | Liu, Tao | Li, Tingxuan
Cell wall acts as a major metal sink in plant roots, while a few studies focused on root cell wall binding in plants for the phytostabilization of multi-metal contaminated soils. A pot experiment was performed to characterize root cell wall properties of the mining ecotype (ME) and non-mining ecotype (NME) of Athyrium wardii (Hook.) in response to Cd and Pb. The cell wall was found to be the major sink for Cd (41.3–54.3%) and Pb (71.4–73.8%) accumulation in roots of the ME when exposed to Cd and/or Pb. The ME showed more Cd and Pb accumulation in root cell walls when exposed to Cd and Pb simultaneously, compared with those exposed to single Cd or Pb as well as the NME, suggesting some modifications for cell walls. The uronic acid contents of pectin and hemicellulose 1 (HC1) in root cell walls of the ME increased significantly when exposed to Cd and Pb simultaneously, suggesting enhanced cell wall binding capacity, thus resulting in more Cd and Pb bound to pectin and HC1. In particular, pectin was found to be the predominant binding site for Cd and Pb. Greater pectin methylesterase activity along with a lower degree of methylesterification were observed in the cell walls of the ME when exposed to Cd and Pb simultaneously. Furthermore, the ME present more O–H, N–H, C–OH, C–O–C, C–C and/or Ar–H in root cell walls when exposed to Cd and Pb simultaneously. These changes of root cell wall properties of the ME lead to enhanced cell wall binding ability in response to the co-contamination of Cd and Pb, thus could be considered a key process for enhanced Cd and Pb accumulation in roots of the ME when exposed to Cd and Pb simultaneously.
显示更多 [+] 显示较少 [-]Ameliorative effects of boron on aluminum induced variations of cell wall cellulose and pectin components in trifoliate orange (Poncirus trifoliate (L.) Raf.) rootstock
2018
Yan, Lei | Riaz, Muhammad | Wu, Xiuwen | Du, Chenqing | Liu, Yalin | Jiang, Cuncang
Aluminum (Al) phytotoxicity is a major limitation in the production of crops in the soils with pH ≤ 5. Boron (B) is indispensable nutrient for the development of higher plants and B role has been reported in the alleviation Al toxicity. Trifoliate orange rootstock was grown in two B and two Al concentrations. The results of the present study showed that Al toxicity adversely inhibited root elongation and exhibited higher oxidative stress in terms of H2O2 and O2− under B-deficiency. Additionally, the X-ray diffraction (XRD) analysis confirmed the increase of the cellulose crystallinity in the cell wall (CW). Al-induced remarkable variations in the CW components were prominent in terms of alkali-soluble pectin, 2-keto-3-deoxyoctonic acid (KDO) and the degree of methyl-esterification (DME) of pectin. Interesting, B supply reduced the pectin (alkali-soluble) under Al toxicity. Moreover, the results of FTIR (Fourier transform infrared spectroscopy) and 13C-NMR (13C nuclear magnetic resonance) spectra revealed the decrease of carboxyl groups and cellulose by B application during Al exposure. Furthermore, B supply tended to decrease the Al uptake, CW thickness and callose formation. The study concluded that B could mitigate Al phytotoxicity by shielding potential Al binding sites and by reducing Al induced alterations in the CW cellulose and pectin components.
显示更多 [+] 显示较少 [-]Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions
2018
Yu, Shujun | Liu, Yang | Ai, Yuejie | Wang, Xiangxue | Zhang, Rui | Chen, Zhongshan | Chen, Zhe | Zhao, Guixia | Wang, Xiangke
Heavy metal pollution of water sources has raised global environmental sustainability concerns, calling for the development of high-performance materials for effective pollution treatment. Herein, we report a facile approach to synthesize carbonaceous nanofiber/NiAl layered double hydroxide (CNF/LDH) nanocomposites for high-efficiency elimination of heavy metals from aqueous solutions. The CNF/LDH nanocomposites were characterized by three-dimensional architectures formed by the gradual self-assembly of flower-like LDH on CNF. The nanocomposites exhibited excellent hydrophilicity and high structural stability in aqueous solutions, guaranteeing the high availability of active sites in these environments. High-efficiency elimination of heavy metal ions by the CNF/LDH nanocomposites was demonstrated by the high uptake capacities of Cu(II) (219.6 mg/g) and Cr(VI) (341.2 mg/g). The sorption isotherms coincided with the Freundlich model, most likely because of the presence of heterogeneous binding sites. The dominant interaction mechanisms consisted of surface complexation and electrostatic interaction, as verified by a combination of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses and density functional theory calculations. The results presented herein confirm the importance of CNF/LDH nanocomposites as emerging and promising materials for the efficient removal of heavy metal ions and other environmental pollutants.
显示更多 [+] 显示较少 [-]Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske
2012
Basile, A. | Sorbo, S. | Pisani, T. | Paoli, L. | Munzi, S. | Loppi, S.
This paper tested if culturing the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske with metal solutions (Cd, Cu, Pb and Zn) for 30 days causes metal bioaccumulation and ultrastructural changes. The results showed that despite the high heavy metal concentrations in treatment solutions, treated samples did not show severe ultrastructural changes and cells were still alive and generally well preserved. Bioaccumulation highlighted that moss cells survived to heavy metal toxicity by immobilizing most toxic ions extracellularly, likely in binding sites of the cell wall, which is the main site of metal detoxification.
显示更多 [+] 显示较少 [-]The effect of EDTA, NTA and picolinic acid on Th(IV) mobility in a ternary system with natural sand
2012
Reinoso-Maset, Estela | Worsfold, Paul J. | Keith-Roach, M. J. (Miranda J.)
Organic complexing agents, such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and picolinic acid, have been widely used at nuclear sites and are therefore found as common co-contaminants in radioactive contaminated land. This study has explored the mechanisms by which these three complexing agents affect the sorption of Th(IV) to pure silica and a natural sand. EDTA, NTA and, to a lesser extent, picolinic acid decreased the sorption of Th to silica, demonstrating the formation and solubility of Th complexes. However, Th sorption to sand was kinetically controlled and complexation enhanced the rate of Th sorption. EDTA and NTA did not sorb significantly to the sand, and metal desorption indicated that the mechanism involved exchange with sand-associated metals. At equilibrium, however, Th sorption was not affected by the presence of the ligands, and modelling suggested that the interaction between Th and the surface binding sites controlled Th sorption thermodynamically.
显示更多 [+] 显示较少 [-]Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish
2012
Urbatzka, R. | Rocha, E. | Reis, B. | Cruzeiro, C. | Monteiro, R.A.F. | Rocha, M.J.
In natural environments fish are exposed to endocrine disrupting compounds (EDCs) present at low concentrations and with different modes of actions. Here, adult zebrafish of both sexes were exposed for 21 days to an estrogenic mixture (Mix) of eleven EDCs previously quantified in Douro River estuary (Portugal) and to 100 ng/L 17α-ethinylestradiol (EE2) as positive control. Vitellogenin mRNA and HSI in males confirmed both exposure regimes as physiologically active. Potential candidates for estrogenic disturbance of steroidogenesis were identified (StAR, 17β-HSD1, cyp19a1), but Mix only affected cyp19a1 in females. Significant differences in the response of FSHβ, cypa19a2, 20β-HSD were observed between EE2 and Mix. Mtf-1 and tfap2c transcription factor binding sites were discovered in the putative promoter regions and corresponding transcription factors were found to be differentially expressed in response to Mix and EE2. The results suggest that “non-classical effects” of estrogenic EDC in fish are mediated via transcription factors.
显示更多 [+] 显示较少 [-]Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres
2011
Dai, Chao-meng | Geissen, S.-U. (Sven-Uwe) | Zhang, Ya-lei | Zhang, Yong-jun | Zhou, Xue-fei
A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Qₘₐₓ) of 324.8mg/g and a dissociation constant (Kd) of 3.99mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon.
显示更多 [+] 显示较少 [-]Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803
2020
Naveed, Sadiq | Yu, Qingnan | Zhang, Chunhua | Ge, Ying
Arsenic (As) contamination of water poses severe threats to human health and thus requires effective remediation methods. In this study, Synechocystis PCC6803, a model cyanobacterium common in aquatic environments, was used to investigate the role of extracellular polymeric substances (EPS) in As toxicity, accumulation, and transformation processes. We monitored the growth of Synechocystis with As exposure, measured the zeta potential and binding sites on the cell surface, and analysed As accumulation and speciation in Synechocystis cells with and without EPS. After EPS removal, the binding sites and zeta potential of the cell surface decreased by 44.43% and 31.9%, respectively. The growth of Synechocystis decreased 49.4% and 43.7% with As⁽ᴵᴵᴵ⁾ and As⁽ⱽ⁾ exposure, and As accumulation in the cells decreased by 12.8–44.5% and 14–42.7%, respectively. As absorption was enhanced in cells with EPS removed. The oxidation of As⁽ᴵᴵᴵ⁾ and reduction of As⁽ⱽ⁾ were significantly greater in cells with intact EPS compared to those with EPS removed. Fourier transform infrared spectroscopy (FTIR) showed that functional groups of EPS and Synechocystis cells, including –NH, –OH, CO, and CC, interacted with As species. Together the results of this work demonstrate that EPS have significant impacts on cell surface properties, thereby affecting As accumulation and transformation in Synechocystis PCC6803. This work provides a basis for using EPS to remedy As pollution in aquatic environments.
显示更多 [+] 显示较少 [-]Are nanoplastics able to bind significant amount of metals? The lead example
2019
Davranche, Mélanie | Veclin, Cloé | Pierson-Wickmann, Anne-Catherine | El Hadri, Hind | Grassl, Bruno | Rowenczyk, Laura | Dia, Aline | Ter Halle, Alexandra | Blancho, Florent | Reynaud, Stéphanie | Gigault, Julien
The nanoscale size of plastic debris makes them potential efficient vectors of many pollutants and more especially of metals. In order to evaluate this ability, nanoplastics were produced from microplastics collected on a beach exposed to the North Atlantic Gyre. The nanoplastics were characterized using multi-dimensional methods: asymmetrical flow field flow fractionation and dynamic light scattering coupled to several detectors. Lead (II) adsorption kinetics, isotherm and pH-edge were then carried out. The sorption reached a steady state after around 200 min. The maximum sorption capacity varied between 97% and 78.5% for both tested Pb concentrations. Lead (II) adsorption kinetics is controlled by chemical reactions with the nanoplastics surface and to a lesser extent by intraparticle diffusion. Adsorption isotherm modeling using Freundlich model demonstrated that NPG are strong adsorbents equivalent to hydrous ferric oxides such as ferrihydrite (log Kadsfreundlich=8.36 against 11.76 for NPG and ferrihydrite, respectively). The adsorption is dependent upon pH, in response to the Pb(II) adsorption by the oxygenated binding sites developed on account of the surface UV oxidation under environmental conditions. They could be able to compete with Fe or humic colloids for Pb binding regards to their amount and specific areas. Nanoplastics could therefore be efficient vectors of Pb and probably of many other metals as well in the environment.
显示更多 [+] 显示较少 [-]Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems
2018
Su, Yu | Huang, Ji | Lu, Fenxiao | Tong, Xin | Niu, Junfeng | Mao, Liang
Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of ¹⁴C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl₂) electrolytes. Enhanced agglomeration occurred at high CaCl₂ concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca²⁺. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na⁺ competition for binding sites with Ca²⁺ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na⁺ and <5 mM Ca²⁺). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.
显示更多 [+] 显示较少 [-]