细化搜索
结果 1-10 的 30
Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity
2023
Pesce, Stéphane | Sanchez, Wilfried | Leenhardt, Sophie | Mamy, Laure
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
显示更多 [+] 显示较少 [-]Natural products for biocontrol: review of their fate in the environment and impacts on biodiversity
2024
Amichot, Marcel | Bertrand, Cédric | Chauvel, Bruno | Corio-Costet, M.-F. | Martin-Laurent, Fabrice | Le Perchec, Sophie | Mamy, Laure | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UniCA) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Santé et agroécologie du vignoble (UMR SAVE) ; Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction pour la Science Ouverte (DipSO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (micro and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.
显示更多 [+] 显示较少 [-]RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems
2018
Mougin, Christian | Gouy, Véronique | Bretagnolle, Vincent | Berthou, Julie | Andrieux, Patrick | Ansart, Patrick | Benoit, Marc | Coeurdassier, Michael | Comte, Irina | Dagès, Cécile | Denaix, Laurence | Dousset, Sylvie | Ducreux, Laure | Gaba, Sabrina | Gilbert, Daniel | Imfeld, Gwenaël | Liger, Lucie | Molenat, Jérôme | Payraudeau, Sylvain | Samouëlian, Anatja | Schott, Céline | Tallec, Gaëlle | Vivien, Emma | Voltz, Marc | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | RiverLy (UR Riverly) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt) ; Institut National de la Recherche Agronomique (INRA) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Bureau de Recherches Géologiques et Minières (BRGM) (BRGM) | Laboratoire de Biologie et Ecophysiologie ; Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS) ; Ecole et Observatoire des Sciences de la Terre (EOST) ; Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels | International audience | RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.
显示更多 [+] 显示较少 [-]RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems
2018
Mougin, Christian | Gouy, Véronique | Bretagnolle, Vincent | Berthou, Julie | Andrieux, Patrick | Ansart, Patrick | Benoit, Marc | Coeurdassier, Michael | Comte, Irina | Dagès, Cécile | Denaix, Laurence | Dousset, Sylvie | Ducreux, Laure | Gaba, Sabrina | Gilbert, Daniel | Imfeld, Gwenaël | Liger, Lucie | Molenat, Jérôme | Payraudeau, Sylvain | Samouëlian, Anatja | Schott, Céline | Tallec, Gaëlle | Vivien, Emma | Voltz, Marc | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | RiverLy - Fonctionnement des hydrosystèmes ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt) ; Institut National de la Recherche Agronomique (INRA) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Bureau de Recherches Géologiques et Minières (BRGM) | Laboratoire de Biologie et Ecophysiologie ; Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS) ; Ecole et Observatoire des Sciences de la Terre (EOST) ; Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels | International audience | RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.
显示更多 [+] 显示较少 [-]Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens
2018
Amaral, Karina Dias | Martínez, Luis Carlos | Pereira Lima, Maria Augusta | Serrão, José Eduardo | Della Lucia, Terezinha M. C.
Leaf-cutting ants are important pests of forests and agricultural crops in the Neotropical region. Atta sexdens colonies can be composed of thousands of individuals, which form a highly complex society with a single reproductive queen. Successful control of this species is achieved only if the queen is affected. Few data are available on the lethal or sublethal effects of toxic compounds on leaf-cutting ant queens. Azadirachtin has been claimed as an effective biopesticide for insect control, but its action on leaf-cutting ants has been little explored. This study shows that azadirachtin affects oviposition in A. sexdens queens, impairing egg development by decreasing protein reserves. Azadirachtin inhibits the synthesis of vitellogenin, the major yolk protein precursor. The negative effects of azadirachtin on the reproduction of leaf-cutting ant queens suggest a potential use for the control of these insects.
显示更多 [+] 显示较少 [-]Valorisation of agri-food waste to fertilisers is a challenge in implementing the circular economy concept in practice
2022
Chojnacka, K. | Moustakas, K. | Mikulewicz, M.
The area of agricultural wastes valorisation to fertilizers is attracting growing attention because of the increasing fertilizer prices of fertilizers and the higher costs of waste utilization. Despite the scientific and political interest in the concept of circular economy, few studies have considered the practical approach towards the implementation of elaborated technologies. This article outlines innovative strategies for the valorisation of different biobased wastes into fertilizers. The present work makes a significant contribution to the field of new ideas for waste biomass management to recover significant fertilizer nutrients. These results emphasize the importance of the biomass use as a base of renewable resources, which has recently gained special importance, especially in relation to the outbreak of pandemia and war. Broken supply chains and limited access to deposits of raw materials used in fertilizer production (natural gas, potassium salts) meant that now, as never before, it has become more important and feasible to implement the idea of a circular economy and a green deal. We have obtained satisfactory results that demonstrate that appropriate management of biological waste (originating from agriculture, food processing, aquaculture, forest, pharmaceutical industry, and other branches of industry, sewage sludge) will not only reduce environmental nuisance (reducing waste heaps), but will also allow recovery of valuable materials, such as nitrogen (especially valuable amino acids), phosphorus, potassium, microelements, and biologically active substances with properties that stimulate plant growth. The results reported here provide information on production of biobased plant protection products (bioagrochemicals) from agri-food waste. This work reports an overview of biopesticides and biofertilisers production technologies and summarizes their properties and the mechanisms of action.
显示更多 [+] 显示较少 [-]Impact of micropollutants on the life-history traits of the mosquito Aedes aegypti: On the relevance of transgenerational studies
2017
Prud'homme, Sophie M. | Chaumot, Arnaud | Cassar, Eva | David, Jean-Philippe | Reynaud, Stéphane
Hazard assessment of chemical contaminants often relies on short term or partial life-cycle ecotoxicological tests, while the impact of low dose throughout the entire life cycle of species across multiple generations has been neglected. This study aimed at identifying the individual and population-level consequences of chronic water contamination by environmental concentrations of three organic micropollutants, ibuprofen, bisphenol A and benzo[a]pyrene, on Aedes aegypti mosquito populations in experimental conditions. Life-history assays spanning the full life-cycle of exposed individuals and their progeny associated with population dynamics modelling evidenced life-history traits alterations in unexposed progenies of individuals chronically exposed to 1 μg/L ibuprofen or 0.6 μg/L benzo[a]pyrene. The progeny of individuals exposed to ibuprofen showed an accelerated development while the progeny of individuals exposed to benzo[a]pyrene showed a developmental acceleration associated with an increase in mortality rate during development. These life-history changes due to pollutants exposure resulted in relatively shallow increase of Ae. aegypti asymptotic population growth rate. Multigenerational exposure for six generations revealed an evolution of population response to ibuprofen and benzo[a]pyrene across generations, leading to a loss of previously identified transgenerational effects and to the emergence of a tolerance to the bioinsecticide Bacillus turingiensis israelensis (Bti). This study shed light on the short and long term impact of environmentally relevant doses of ibuprofen and benzo[a]pyrene on Ae. aegypti life-history traits and insecticide tolerance, raising unprecedented perspectives about the influence of surface water pollution on vector-control strategies. Overall, our approach highlights the importance of considering the entire life cycle of organisms, and the necessity to assess the transgenerational effects of pollutants in ecotoxicological studies for ecological risk assessment. Finally, this multi-generational study gives new insight about the influence of surface water pollution on microevolutionary processes.
显示更多 [+] 显示较少 [-]Responses of benthic macroinvertebrate communities to a Bti-based insecticide in artificial microcosm streams
2021
Bordalo, Maria D. | Machado, Ana L. | Campos, Diana | Coelho, Sónia D. | Rodrigues, Andreia C.M. | Lopes, Isabel | Pestana, João L.T.
Bioinsecticides based on the bacterium Bacillus thuringiensis subsp. israelensis (Bti) are increasingly being applied directly into aquatic compartments to control nuisance mosquitoes and blackflies and are generally considered environmentally friendly alternatives to synthetic insecticides. Bti-based insecticides are considered highly selective, being Diptera-specific, and supposedly decompose rapidly in the environment. Nevertheless, their safety to non-target species and freshwater ecosystems has been questioned by recent studies, which in fact document possible indirect effects in aquatic food webs such as the decrease of prey availability to predators. This work aimed to evaluate the potential effects of a Bti-based insecticide (VectoBac® 12AS) on a freshwater macroinvertebrate community and on stream ecological functions by using artificial microcosm streams. Artificial microcosm streams were colonized with a macroinvertebrate community plus periphyton collected in a stream together with Alnus glutinosa leaf packs. They were exposed for 7 days to different Bti treatments (0, 12, 120, 1200 μg/L), which are within the recommended concentrations of application in aquatic compartments for blackfly and mosquito control. Besides invertebrate community structure and abundance, effects were evaluated regarding leaf decomposition and primary production as measures of ecosystem functioning. Community structure was significantly altered in all Bti treatments after 7 days of exposure, mostly due to a decline in chironomids, followed by oligochaetes, which both belong to the deposit-feeders’ functional group. Direct effects on oligochaetes are surprising and require further research. Also, reductions of leaf decomposition due to Bti-induced sublethal effects on shredders (reduced feeding) or mortality of chironomids (that can also feed on coarse organic matter) observed in our study, represent potential indirect effects of Bti in aquatic ecosystems. Our short-exposure experiment evidenced some negative effects on stream benthic invertebrate communities and on ecosystem functioning that must be considered whenever Bti is used in water bodies for blackfly or mosquito control programs.
显示更多 [+] 显示较少 [-]A critical review of effect modeling for ecological risk assessment of plant protection products
2022
Larras, Floriane | Charles, Sandrine | Chaumot, Arnaud | Pelosi, Céline | Le Gall, Morgane | Mamy, Laure | Beaudouin, Rémy
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
显示更多 [+] 显示较少 [-]Biopesticides extension and rice farmers’ adoption behavior: a survey from Rural Hubei Province, China
2022
Huang, Yanzhong | Li, Zhaoliang | Luo, Xiaofeng | Liu, Di
Although the beneficial effects of the agricultural extension of farmers’ biopesticides adoption have been largely demonstrated, the questions of what approaches can better extend biopesticides and how to improve their effectiveness still need to be explored. In a survey of 1148 rice farmers in Hubei Province, China, the technology supply and demand theory is used to explain the low efficiency of biopesticides extension. The endogenous switching probit model is used to estimate the impact of biopesticides technology publicity, training, demonstration and subsidies on farmers’ adoption. The results show that biopesticides extension can promote rice farmers’ adoption probability by 10.3 ~ 11.7%. And technology demonstration is currently the best way to extend biopesticides. Moreover, inadequate supply and demand of biopesticides are important for explaining the inefficiency of biopesticides extension in China. Extending biopesticides is better for farmers with smaller scales, younger ages, and lower education and for those who are cooperative members. Therefore, we should not only actively conduct biopesticides demonstration but also more importantly induce farmers’ biopesticides demand and secure the market supply of biopesticide products. These findings will provide useful guidance for biopesticides extension and pesticides reduction in China and other developing countries.
显示更多 [+] 显示较少 [-]