细化搜索
结果 1-10 的 58
Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis 全文
2022
Faridi, Sasan | Brook, Robert D. | Yousefian, Fatemeh | Hassanvand, Mohammad Sadegh | Nodehi, Ramin Nabizadeh | Shamsipour, Mansour | Rajagopalan, Sanjay | Naddafi, Kazem
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of −0.78 mmHg (95% confidence interval [CI]: −2.06, 0.50) and −0.49 mmHg (95%CI: −1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: −2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms² (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15–0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04–0.15Hz))-to-high frequency ratio [−0.14 (95%CI: −0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
显示更多 [+] 显示较少 [-]Co-exposure to priority-controlled metals mixture and blood pressure in Chinese children from two panel studies 全文
2022
Liu, Miao | Li, Meng | Guo, Wenting | Zhao, Lei | Yang, Huihua | Yu, Jie | Liu, Linlin | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhu, Kejing | Dai, Wencan | Mei, Wenhua | Zhang, Xiaomin
Metals may affect adversely cardiovascular system, but epidemiological evidence on the associations of priority-controlled metals including antimony (Sb), arsenic (As), cadmium, lead, and thallium with children's blood pressure (BP) was scarce and inconsistent. We conducted two panel studies with 3 surveys across 3 seasons among 144 and 142 children aged 4–12 years in Guangzhou and Weinan, respectively. During each seasonal survey, urine samples were collected for 4 consecutive days and BP was measured on the 4th day. We obtained 786 BP values and urinary metals measurements at least once within 4 days, while 773, 596, 612, and 754 urinary metals measurements were effective on the health examination day (Lag 0), and the 1ˢᵗ, 2ⁿᵈ, and 3ʳᵈ day preceding BP measurement (Lag 1, lag 2 and lag 3), respectively. We used linear mixed-effect models, generalized estimating equations and multiple informant models to assess the associations of individual metal at each lag day and accumulated lag day (4 days averaged, lag 0–3) with BP and hypertension, and Bayesian Kernel Machine Regression to evaluate the relations of metals mixture at lag 0–3 and BP outcomes. We found Sb was positively and consistently related to systolic BP (SBP), mean arterial pressure (MAP), and odds of having hypertension within 4 days, which were the strongest at lag 0 and declined over time. And such relationships at lag 0–3 showed in a dose-response manner. Meanwhile, Sb was the only contributor to the relations of mixture with SBP, MAP, and odds of having hypertension. Also, synergistic interaction between Sb and As was significant. In addition, modification effect of passive smoking status on the association of Sb and SBP was more evident in passive smokers. Accordingly, urinary Sb was consistently and dose-responsively associated with increased BP and hypertension, of which Sb was the major contributor among children.
显示更多 [+] 显示较少 [-]Association of exposure to organophosphate esters with increased blood pressure in children and adolescents 全文
2022
Hu, Liqin | Yu, Meng | Li, Yaping | Liu, Ling | Li, Xiang | Song, Lulu | Wang, Youjie | Mei, Surong
Organophosphate esters (OPEs) are widely added to various industrial and consumer products, and are mainly used as flame retardants and plasticizers. Existing epidemiological studies suggest that OPE exposure may be linked to increased blood pressure (BP) and hypertension risk in adults. However, it remains unclear whether OPE exposure is associated with increased BP in children and adolescents. Here, we investigated the associations between OPE exposure and BP levels in 6–18-year-old children and adolescents from a cross-sectional study in Liuzhou, China. OPE metabolites were determined in spot urine samples (n = 1194) collected between April and May 2018. Three measurements of systolic and diastolic BP for each participant were averaged as study outcomes. Associations of OPE exposure with age-, sex- and height-standardized BP were assessed using linear regression models. We found that each natural log unit increment of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with a 0.06 standard deviation unit (95% confidant interval (CI): 0.01, 0.11) increase in systolic BP z-score. When conducting stratified analysis based on sex, age, and BMI category, BDCIPP was shown to be positively associated with systolic/diastolic BP z-score in females, but not in males. The associations between bis(2-butoxyethyl) phosphate (BBOEP) and systolic/diastolic BP z-score were pronounced in adolescents, but not in children. Moreover, a significant positive association between 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and diastolic BP z-score was observed in obese subjects. The present study provides the first evidence that OPE exposure was related to increased BP in children and adolescents. Given the scarcity of high-quality evidence supporting these results, the health effects of OPEs are warrant investigation in well-designed prospective studies.
显示更多 [+] 显示较少 [-]Do improved biomass cookstove interventions improve indoor air quality and blood pressure? A systematic review and meta-analysis 全文
2021
Kumar, Nitya | Phillip, Eunice | Cooper, Helen | Davis, Megan | Langevin, Jessica | Clifford, Mike | Stanistreet, Debbi
This systematic review and meta-analysis evaluates the most recent evidence to examine whether use of improved biomass cookstoves in households in low-middle income countries results in reduction in mean concentrations of carbon monoxide (CO) and particulate matter of size 2.5 μm (PM₂.₅) in the cooking area, as well as reduction in mean systolic (SBP) and diastolic blood pressure (DBP) of adults using the cookstoves when compared to adults who use traditional three stone fire or traditional biomass cookstoves.We searched databases of scientific and grey literature. We included studies if published between January 2012 and June 2021, reported impact of ICS interventions in non-pregnant adults in low/middle-income countries, and reported post-intervention results along with baseline of traditional cookstoves. Outcomes included 24- or 48-h averages of kitchen area PM₂.₅, CO, mean SBP and DBP. Meta-analyses estimated weighted mean differences between baseline and post-intervention values for all outcome measures.Eleven studies were included; ten contributed estimates for HAP and four for BP. Interventions lead to significant reductions in PM₂.₅ (−0.73 mg/m³, 95% CI: −1.33, −0.13), CO (−8.37 ppm, 95%CI: −13.20, −3.54) and SBP (−2.82 mmHg, 95% CI: −5.53, −0.11); and a non-significant reduction in DBP (−0.80 mmHg, 95%CI: −2.33, 0.73), when compared to baseline of traditional cookstoves. Except for DBP, greatest reductions in all outcomes came from standard combustion ICS with a chimney, compared to ICS without a chimney and advanced combustion ICS.Among the reviewed biomass stove types, ICS with a chimney feature resulted in greatest reductions in HAP and BP.
显示更多 [+] 显示较少 [-]microRNAs expression in relation to particulate matter exposure: A systematic review 全文
2020
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
显示更多 [+] 显示较少 [-]Changes in blood pressure associated with lead, manganese, and selenium in a Bangladeshi cohort 全文
2019
Bulka, Catherine M. | Scannell Bryan, Molly | Persky, Victoria W. | Daviglus, Martha L. | Durazo-Arvizu, Ramon A. | Parvez, Faruque | Slavkovich, Vesna | Graziano, Joseph H. | Islam, Tariqul | Baron, John A. | Ahsan, Habibul | Argos, Maria
Heavy metal contamination is widespread in Bangladesh. Previous studies have observed lead increases blood pressure over time. However, the role of other metal contaminants and essential micronutrients, which could also adversely affect blood pressure or act as protective factors, is understudied.We therefore evaluated the associations of lead, manganese, and selenium with blood and pulse pressure trajectories.We prospectively followed placebo-assigned participants nested within a randomized trial for the prevention of arsenic-related skin cancer (n = 255). Blood lead, manganese, and selenium were measured at baseline; blood pressure was measured at baseline and at 3 biennial follow-up examinations. Mixed-effect linear regression models were used to estimate associations with average annual changes in systolic, diastolic, and pulse pressure.In models simultaneously adjusted for baseline blood lead, manganese, and selenium concentrations in addition to other potential confounders, lead was linearly associated with increases in systolic blood pressure, but not with diastolic blood pressure or pulse pressure. A non-linear association was observed for manganese, such that mid-range concentrations were associated with decreases in systolic, diastolic, and pulse pressure. Baseline selenium concentrations in the highest quartile were also associated with longitudinal decreases in both systolic and diastolic blood pressure, while null associations were observed with pulse pressure. In exploratory analyses, the combination of mid-range manganese and high selenium concentrations completely offset lead-associated increases in blood and pulse pressure.The results indicate a direct, linear association of lead exposure with systolic blood pressure, and manganese and selenium exposures within certain ranges may have a blood pressure-lowering effect in this population.
显示更多 [+] 显示较少 [-]Di-(2-ethylhexyl) phthalate induced an increase in blood pressure via activation of ACE and inhibition of the bradykinin-NO pathway 全文
2019
Deng, Ting | Xie, Xiaoman | Duan, Jiufei | Chen, Mingqing
Epidemiological studies and animal experiments have suggested that exposure to Di-(2-ethylhexyl) phthalate (DEHP) is strongly associated with an increase in blood pressure. However, the mechanisms that result in the detrimental effects of DEHP exposure on blood pressure are unclear. In our study, mice were orally exposed to DEHP dosages of 0.1, 1, 10 mg/kg/day for 6 weeks. The results showed that DEHP could induce a significant increase in systolic blood pressure (SBP) and heart rate, and a significant thickening of the ventricular wall. To explore the underlying mechanism, we measured the level of: angiotensin converting enzyme (ACE); bradykinin B2 receptor (BK2R); endothelial nitric oxide synthase (eNOS); bradykinin and Ca²⁺ in cardiac cytoplasm as well as in serum nitric oxide (NO). The results suggested that DEHP could induce an increase in ACE levels, and a decrease in bradykinin levels. Moreover, BK2R, Ca²⁺, eNOS and NO decreased when mice were exposed to 10 mg/kg/day DEHP. Interestingly, 5 mg/kg/day angiotensin converting enzyme inhibitor (ACEI) treatment inhibited the increase in blood pressure, and inhibited the decrease in the levels of BK2R, Ca²⁺, eNOS, and NO, that were induced by DEHP exposure. Our results suggest that DEHP might increase blood pressure by activating ACE expression, and inhibiting the bradykinin-NO pathway.
显示更多 [+] 显示较少 [-]Alterations in cardiovascular function by particulate matter in rats using a crossover design 全文
2017
Chuang, Hsiao-Chi | Lin, Yin-Jyun | Chou, Charles C.K. | Hwang, Jing-Shiang | Chen, Chu-Chih | Yan, Yuan-Horng | Hsieh, Hui-I. | Chuang, Kai-Jen | Cheng, Tsun-Jen
The objective of this study was to investigate associations between cardiovascular effects and urban ambient particle constituents using an in vivo crossover experimental design. Ambient particles were introduced to an exposure chamber for whole-body exposure of WKY rats, where the particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5) mass concentration, particle number concentration, and black carbon (BC) were monitored. Organic carbon (OC), elemental carbon (EC), and soluble ions of PM2.5 were determined. In a crossover design, rats were exposed to ambient particles or high-efficiency particle arrestance (HEPA)-filtered control air for 7 days following a 7-day washout interval. The crossover exposure between particles and HEPA-filtered air was repeated 4 times. Radiotelemetric data on blood pressure (BP) [systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), and mean arterial pressure (MAP)], heart rate (HR), and heart rate viability (HRV) were subsequently obtained during the entire study. Exposure to the PM2.5 mass concentration was associated with decreases in the SBP, DBP, MAP, and HR (p < 0.05), whereas no significant changes in the BP or HR occurred with the particle number or black carbon. For HRV, the ln 5-min standard deviation of the normal-to-normal (NN) interval (LnSDNN) and the ln root mean square of successive differences in adjacent NN intervals (LnRMSSD) were positively associated with the PM2.5 mass concentration (p < 0.05). There were no significant effects of the particle number concentration or BC on HRV. Alterations in the HR were associated with OC, EC, Na⁺, Cl⁻, and NO3⁻. Cl⁻ was associated with the DBP, MAP, HR, SDNN, and RMSSD. NO3⁻ was correlated with the SBP, MAP, HR, SDNN, and RMSSD. In conclusion, we observed cardiovascular responses to ambient particles in vivo using a crossover design which can reduce animal use in future environmental studies.
显示更多 [+] 显示较少 [-]Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China 全文
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
显示更多 [+] 显示较少 [-]The influences of ambient fine particulate matter constituents on plasma hormones, circulating TMAO levels and blood pressure: A panel study in China 全文
2022
Wang, Jiajia | Wu, Shenshen | Cui, Jian | Ding, Zhen | Meng, Qingtao | Sun, Hao | Li, Bin | Teng, Jun | Dong, Yanping | Aschner, Michael | Wu, Ziyuan | Li, Xiaobo | Chen, Rui
Considerable investigations have been carried out to address the relationship between ambient fine particulate matter (PM₂.₅) and blood pressure (BP) in patients with hypertension. However, few studies have explored the influence of PM₂.₅ and its constituents on Trimethylamine N-oxide (TMAO), an established risk factor for hypertension and cardiovascular disease (CVD), particularly in severely air-polluted areas. To explore the potential impact of PM₂.₅ constituents on BP, plasma hormones, and TMAO, a panel study was conducted to investigate changes in BP, plasma hormones, and TMAO in response to ambient air pollution exposure in stage 1 hypertensive young adults. Linear mixed effect models were used to estimate the cumulative effects of fine particulate matters (PM₂.₅) and its constituents on BP, plasma hormones and TMAO. We found that one interquartile range (IQR) (35 μg/m³) increase in 0–1 day moving-average PM₂.₅ concentrations was statistically significantly associated with elevated systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) with estimated values of 0.13 (95% confidence interval (CI): 0.03 to 0.23) mmHg, 0.18 (95% CI: 0.08 to 0.28) mmHg, and 0.17 (95% CI: 0.09 to 0.26) mmHg, respectively. Hormone disturbance in the renin-angiotensin-aldosterone system was also associated with PM₂.₅ exposure. Elevated TMAO levels with an IQR increase for 0–4, 0–5, 0–6 moving-average concentrations of PM₂.₅ were found, and the increased values ranged from 26.28 (95% CI: 2.92 to 49.64) to 60.78 (31.95–89.61) ng/ml. More importantly, the PM₂.₅-bound metal constituents, such as manganese (Mn), titanium (Ti), and selenium (Se) showed robust associations with elevated BP and plasma TMAO levels. This study demonstrates associations between PM₂.₅ metal constituents and increased BP, changes in plasma hormones and TMAO, in stage 1 hypertensive young adults. Source control, aiming to reduce the emission of PM₂.₅-bound metals should be implemented to reduce the risk of hypertension and CVD.
显示更多 [+] 显示较少 [-]