细化搜索
结果 1-10 的 15
Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP)
2021
Zhang, Xin | Tang, Xuexi | Yang, Yingying | Sun, Zijie | Ma, Wenqian | Tong, Xin | Wang, Chengmin | Zhang, Xinxin
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC₅₀ value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
显示更多 [+] 显示较少 [-]Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera)
2013
Rico Martínez, Roberto | Snell, Terry W. | Shearer, Tonya L.
Using the marine rotifer Brachionus plicatilis acute toxicity tests, we estimated the toxicity of Corexit 9500A®, propylene glycol, and Macondo oil. Ratios of 1:10, 1:50 and 1:130 for Corexit 9500A®:Macondo oil mixture represent: maximum exposure concentrations, recommended ratios for deploying Corexit (1:10–1:50), 1:130 the actual dispersant:oil ratio used in the Deep Water Horizon spill. Corexit 9500A® and oil are similar in their toxicity. However, when Corexit 9500A® and oil are mixed, toxicity to B. manjavacas increases up to 52-fold. Extrapolating these results to the oil released by the Macondo well, suggests underestimation of increased toxicity from Corexit application. We found small differences in sensitivity among species of the B. plicatilis species complex, likely reflecting phylogenetic similarity. Just 2.6% of the water-accommodated fraction of oil inhibited rotifer cyst hatching by 50%, an ecologically significant result because rotifer cyst in sediments are critical resources for the recolonization of populations each Spring.
显示更多 [+] 显示较少 [-]Metabolism deficiency and oxidative stress induced by plastic particles in the rotifer Brachionus plicatilis: Common and distinct phenotypic and transcriptomic responses to nano- and microplastics
2022
Shin, Heesang | Jeong, Chang-Bum
Growing experimental data on the adverse effects of microplastic pollution on marine biota indicate that the size of the plastic particles is a key determinant of toxicity. Here, we investigated size-dependent toxicity at different levels of biological organizations in the marine rotifer Brachionus plicatilis, from bioaccumulation as an initiating event to adverse in-vivo outcomes, with ecotoxicogenomic approach to elucidate the size-dependent toxicity of microplastics. Nanoplastics strongly retarded the reproduction and population growth of B. plicatilis, while microplastics were associated with moderate effects. This size dependency could be attributed to the selective induction of oxidative stress by nanoplastic exposure in addition to a metabolic deficiency, which was a common toxicity mechanism with both nano- and microplastic exposure as predicted by transcriptomic analysis. Our findings suggested that metabolic deficiency is a shared toxicity mechanism of nano- and microplastics, while oxidative stress might be responsible for the stronger toxicity of nanoplastics.
显示更多 [+] 显示较少 [-]Effects of temperature changes on life parameters, oxidative stress, and antioxidant defense system in the monogonont marine rotifer Brachionus plicatilis
2020
Han, Jeonghoon | Lee, Jin-Sol | Park, Jun Chul | Hagiwara, A. (Atsushi) | Lee, Kyun-Woo | Lee, Jae-seong
Global warming is a big concern for all organisms and many efforts have been made to reveal the potential effects of temperature elevation on aquatic organisms. However, limited studies on molecular mechanistic approaches on physiological effects due to temperature changes are available. Here, we investigated the effects of temperature changes on life parameters (e.g., population growth [total number of rotifers], and lifespan), oxidative stress levels and antioxidant activities (e.g., glutathione S-transferase [GST], catalase [CAT], superoxide dismutase [SOD]) with expression levels in the monogonont marine rotifer Brachionus plicatilis. The changes in temperatures led to significant reduction (P < 0.05) in lifespan, possibly due to significant decrease (P < 0.05) in antioxidant activities, reducing the potential to cope with significant elevation in the temperature-induced oxidative stress in B. plicatilis. To further assess the actual induction and clearance of reactive oxygen species (ROS), N-acetyl-L-cysteine was used to examine whether the temperature-induced oxidative stress could be successfully scavenged. Furthermore, expression patterns of the antioxidant-related genes (GSTs, SODs, and CATs) were down- or upregulated (P < 0.05) in response to different temperatures in B. plicatilis. Overall, these findings indicate that ROS-mediated oxidative stress led to cellular damage and antioxidant defense system, resulting in deleterious effects on life parameters in rotifer.
显示更多 [+] 显示较少 [-]Responses of the rotifer Brachionus plicatilis to flame retardant (BDE-47) stress
2017
Jian, Xiaoyang | Tang, Xuexi | Xu, Ningning | Sha, Jingjing | Wang, You
A series of short-term toxicological tests were conducted on the rotifer Brachionus plicatilis to assess the toxicity of the flame retardant 2,2′,4,4′-tetrabrominated biphenyl ether (BDE-47). BDE-47 increased mortality, morphological damage, and altered population dynamics and fecundity of rotifer. Antioxidant enzymes were differentially changed to maintain the balance between antioxidant and pro-oxidant activity. However, with increases in the concentration of BDE-47, the metabolic and antioxidant activity decreased. Moreover, the reactive oxygen species (ROS) and malondialdehyde contents increased and the ratio between glutathione and glutathione-SH decreased, indicating oxidative stress. The addition of the ROS-inhibitor N-acetylcysteine alleviated the degree of damage and stimulated the activity of xenobiotic-metabolizing and antioxidant system, which suggested that ROS were the most important loop in the stress response.
显示更多 [+] 显示较少 [-]Ex-situ evaluation of bauxite residues as amendment for trace elements stabilization in dredged sediment from Mediterranean Sea: A case study
2015
Taneez, Mehwish | Hurel, Charlotte | Marmier, Nicolas
Stabilization of marine dredged sediments contaminated with multi-elements is a challenging task in choosing the appropriate sorbent and application dosage. The present study investigates the possibility of using bauxite residues (Bauxaline® and Bauxsol) as amendment for the treatment of contaminated sediment. A pilot scale experiment was conducted for three months to stabilize trace elements in composted contaminated sediment sample using 5% by-product amendment. The results showed that after 3months of treatment, cationic trace elements were effectively immobilized but increased leaching of anionic pollutants was observed. Increased leaching of anionic pollutants could be limited by addition of higher quantities of amendments. The total content of available pollutants decreased in stabilized sediments but this treatment has no effect on the classification of waste. The leachates were then evaluated for acute toxicity using estuarine rotifers Brachionus plicatilis. Bauxite residues can be inexpensive choices for the stabilization of cationic pollutants in dredged sediments.
显示更多 [+] 显示较少 [-]Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France)
2012
Delpy, Floriane | Pagano, Marc | Blanchot, Jean | Carlotti, François | Thibault-Botha, Delphine
The Berre Lagoon has been under strong anthropogenic pressure since the early 1950s. The opening of the hydroelectric EDF power plant in 1966 led to large salinity drops. The zooplankton community was mainly composed of two common brackish species: Acartia tonsa and Brachionus plicatilis. Since 2006, European litigation has strongly constrained the input of freshwater, maintaining the salinity above 15. A study was performed between 2008 and 2010 to evaluate how these modifications have impacted the zooplankton community. Our results show that the community is more diverse and contains several coastal marine species (i.e., Centropages typicus, Paracalanus parvus and Acartia clausi). A. tonsa is still present but is less abundant, whereas B. plicatilis has completely disappeared. Strong predatory marine species, such as chaetognaths, the large conspicuous autochtonous jellyfish Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi, are now very common as either seasonal or permanent features of the lagoon.
显示更多 [+] 显示较少 [-]Oxidative stress–mediated synergistic deleterious effects of nano- and microplastics in the hypoxia-conditioned marine rotifer Brachionus plicatilis
2022
Lee, Yoseop | Kim, Min-Sub | Park, Jordan Jun Chul | Lee, Young-Hwan | Lee, Jae-seong
While pollution due to nano- and micro-sized plastics (NMPs) and hypoxic conditions both occur in coastal areas, the deleterious potential of co-exposure to hypoxia and NMPs (hypoxia and micro-sized plastics, HMPs; hypoxia and nano-sized plastics, HNPs) is largely unclear. Here, we provide evidence for multigenerational effects of HMP and HNP in the marine rotifer Brachionus plicatilis by investigating changes in its life traits, antioxidant system, and hypoxia-inducible factor (HIF) pathway using an orthogonal experimental design, with nanoscale and microscale particles measuring 0.05 μm and 6.0 μm in diameter, respectively, and hypoxic conditions of 0.5 mg/L for six generations. Combined exposure to NMPs and hypoxia caused a significant decrease in fecundity and overproduction of reactive oxygen species (ROS). The HIF pathway and circadian clock genes were also significantly upregulated in response to HMP and HNP exposure. In particular, synergistic deleterious effects of HNP were evident, suggesting that size-dependent toxicity can be a major driver of the effects of hypoxia and NMP co-exposure. After several generations of exposure, ROS levels returned to basal levels and transcriptomic resilience was observed, although rotifer reproduction remained suppressed. These findings help eluciating the underlying molecular mechanisms involved in responses to plastic pollution in hypoxic conditions.
显示更多 [+] 显示较少 [-]Development of seawater quality criteria for phenanthrene based on toxicity data of native species in the Bohai Sea
2022
Qin, Lu | Li, Peng | Gao, Chen | Fu, Ping | Wang, Dong | Wang, Jun
Phenanthrene (Phe), one of the most commonly detected polycyclic aromatic hydrocarbons, poses a potential threat to marine ecosystems due to its strong toxicity to aquatic organisms. Developing marine water quality criteria (WQC) is critical to effectively control Phe pollution. This study conducted 10 acute toxicity tests and 4 chronic toxicity tests using native species in the Bohai Sea, China and found that the half-lethal/effective concentrations (LC₅₀/EC₅₀) of Phe for all tested organisms were in the range of 0.198–50.142 mg/L. Among them, the mysid Neomysis awatschensis was the most sensitive species, and the rotifer Brachionus plicatilis was the least sensitive. In terms of chronic toxicity, the range of no-observed-effect concentrations (NOECs) for the four tested organisms was 0.0156–4.00 mg/L. Based on the toxicity data and other data collected from existing databases and literature, the established species sensitivity distribution (SSD) model revealed that the marine WQC for Phe was 39.55 μg/L. Furthermore, the reliability of the derived criteria was verified by measuring multiple endpoints of Skeletonema costatum and Brachionus plicatilis after chronic exposure to Phe. Finally, the environmental concentrations of Phe in the Bohai Sea were determined to be 8.0–318 ng/L, and the joint probability curve (JPC) results showed that the ecological risk of Phe was acceptable. This study provides a reference for developing seawater quality standards for Phe.
显示更多 [+] 显示较少 [-]Miniaturised marine tests as indicators of aromatic hydrocarbon toxicity: Potential applicability to oil spill assessment
2021
Colvin, Katherine A. | Parkerton, Thomas F. | Redman, Aaron D. | Lewis, Ceri | Galloway, Tamara S.
Assessing oil spill toxicity in real time is challenging due to dynamic field exposures and lack of simple, rapid, and sensitive tests. We investigated the relative sensitivity of two commercially available marine toxicity tests to aromatic hydrocarbons using the target lipid model (TLM). State of the art passive dosing in sealed vials was used to assess the sensitivity of brine shrimp (Artemia franciscana) and rotifer (Brachionus plicatilis). Organisms were exposed to toluene, 1-methylnaphthalene and phenanthrene for 24 h. Toxicity results were analysed using the TLM to estimate the critical target lipid body burden and support comparison to empirical data for 79 other aquatic organisms. Our findings demonstrate the applicability of passive dosing to test small volumes and indicate that the two rapid cyst-based assays are insensitive in detecting hydrocarbon exposures compared to other aquatic species. Our results highlight the limitations of applying these tests for oil pollution monitoring and decision-making.
显示更多 [+] 显示较少 [-]