细化搜索
结果 1-10 的 58
Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils
2021
Inoculation of soil or seeds with plant growth promoting bacteria ameliorates metal toxicity to plants by changing metal speciation in plant tissues but the exact location of these changes remains unknown. Knowing where the changes occur is a critical first step to establish whether metal speciation changes are driven by microbial metabolism or by plant responses. Since bacteria concentrate in the rhizosphere, we hypothesised steep changes in metal speciation across the rhizosphere. We tested this by comparing speciation of zinc (Zn) in roots of Brassica juncea plants grown in soil contaminated with 600 mg kg⁻¹ of Zn with that of bulk and rhizospheric soil using synchrotron X-ray absorption spectroscopy (XAS). Seeds were either uninoculated or inoculated with Rhizobium leguminosarum bv. trifolii and Zn was supplied in the form of sulfide (ZnS nanoparticles) and sulfate (ZnSO₄). Consistent with previous studies, Zn toxicity, as assessed by plant growth parameters, was alleviated in B. juncea inoculated with Rhizobium leguminosarum. XAS results showed that in both ZnS and ZnSO₄ treatments, the most significant changes in speciation occurred between the rhizosphere and the root, and involved an increase in the proportion of organic acids and thiol complexes. In ZnS treatments, Zn phytate and Zn citrate were the dominant organic acid complexes, whilst Zn histidine also appeared in roots exposed to ZnSO₄. Inoculation with bacteria was associated with the appearance of Zn cysteine and Zn formate in roots, suggesting that these two forms are driven by bacterial metabolism. In contrast, Zn complexation with phytate, citrate and histidine is attributed to plant responses, perhaps in the form of exudates, some with long range influence into the bulk soil, leading to shallower speciation gradients.
显示更多 [+] 显示较少 [-]Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea
2021
Jeyasundar, Parimala Gnana Soundari Arockiam | Ali, Amjad | Azeem, Muhammad | Li, Yiman | Guo, Di | Sikdar, Ashim | Abdelrahman, Hamada | Kwon, Eilhann | Antoniadis, Vasileios | Mani, Vellingiri Manon | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zengqiang
Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.
显示更多 [+] 显示较少 [-]Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies
2016
Feng, Nan | Ghoveisi, Hossein | Bitton, Gabriel | Bonzongo, Jean-Claude J.
Zero valent iron (ZVI) has been widely tested and used in remediation of both contaminated soils and groundwater, and in general, the in situ amendment of the contaminated media is used as remediation approach. However, concerns remain as to the potential detrimental effects of both the immobilized ZVI and the adsorbed pollutants as the treated system could undergo transformations over time. Accordingly, plans for soil remediation by in situ immobilization of sorbents should include a long-term monitoring of the treated systems. Here, we report on a comparative study in which artificially Cu-contaminated sandy and organic soils characterized by different metal binding capacities were treated by either (i) in situ immobilization of ZVI in the soils, or (ii) by a ZVI amendment followed by magnetic retrieval of formed ZVI-Cu complexes prior to plant growth studies. The latter relies on the combination of the high metal adsorption capacity and magnetism of ZVI. Two plant species, Lactuca sativa (lettuce) and Brassica juncea (Indian mustard) were used to assess the efficiency of the two treatment methods in eliminating the bioavailable fraction of Cu. Overall, the results showed that, if soil remediation by in situ immobilization reduces the bio-accessible fraction of Cu, treatment using ZVI amendment followed by magnetic separation performs better. The latter resulted in less Cu accumulated in the shoots and roots of plants. In parallel to the plant growth study, we used MetPLATE™, a short-term bioassay based on the inhibition of the β-galactosidase enzyme by the bioavailable fraction of heavy metal cations, to predict the efficiency of the two treatment methods with regard to the elimination of Cu phyto-toxicity. The results of the bioassay confirmed the trends of phyto-toxicity results, suggesting that MetPLATE™ could be an adequate alternative to the more expensive, labor intensive, and time consuming plant growth studies.
显示更多 [+] 显示较少 [-]Streptomyces pactum and sulfur mediated the rhizosphere microhabitats of potherb mustard after a phytoextraction trial
2021
Guo, Di | Ali, Amjad | Zhang, Zengqiang
To explore the performance of Streptomyces pactum (Act12) alone (A) and jointly with sulfur (SA) in the phytoextraction practice of potentially toxic elements (PTEs) (Cd and Zn), as well as their effects on soil chemical properties and microbial community composition, this paper selected potherb mustard (Brassica juncea, Coss.) as the test plant to assess the feedback of soil-plant ecosystems. Metal uptake values in lone Act12 treatments were higher than that of Act12 + sulfur treatments, and showed dose dependent with Act12 due to the higher biomass production. According to the biochemical analyses of rhizosphere soils, Act12 inoculation significantly increased urease (20.4%) and dehydrogenase (58.5%) while reducing alkaline phosphatase (68.0%) activity. The production of soil organic acids was, in descending order, formic acid > oxalic acid > malic acid > propionic acid and indicated a stimulated variation under treatments (SA > A > control). High-throughput sequencing revealed that bacterial community compositions were consistent in both phylum and genus taxonomies, while the final overall proportions were modified. The populations of the predominant phyla Proteobacteria and Bacteroidetes increased after sulfur application. The contribution of Act12 to the relative abundance of microbiota was minor compared to sulfur. Based on a redundancy analysis, soil chemical properties are the drivers of microbial activities and the main contributor to plant growth. Our results suggested Act12 inoculation may be part of an effective strategy enhancing phytoremediation of PTE-contaminated soils through chemical and biotic processes, and provided important implications for sustainable land utilization and crop production.
显示更多 [+] 显示较少 [-]A phytoextraction trial strengthened by Streptomyces pactum and plant nutrients: In view of plant bioindicators and phytoextraction indices
2020
Guo, Di | Ren, Chunyan | Ali, Amjad | Zhang, Yang | Du, Juan | Wang, Ping | Li, Ronghua | Zhang, Zengqiang
The present work was done to explore the joint effect of Streptomyces pactum (Act12) and plant nutrients on phytoremediation of smelter-contaminated soils. The physiological indicators and phytoextraction indices of potherb mustard (Brassica juncea, Coss) grown in Act12 inoculated soil with or without Hoagland’s solution (H), humic acid (HA) and peat (PS) were evaluated. The results indicated that H, HA and PS acted synergistically with Act12, notably increasing chlorophyll and soluble protein contents and thereby promoting plant growth. Soil nutrient treatments reduced the antioxidant activities (PPO, CAT and POD) by 28.2–41.4%, 22.3–90.1% and 15.2–59.4% compared to control, respectively. Act12 and H treatments markedly facilitated plant to accumulate more cadmium (Cd) and zinc (Zn), but it was observed decreases when applied with HA and PS. Metal uptake (MU) values further indicated the differences in phytoextraction efficiency, i.e., H > PS > Control > HA. Taken together, Act12 combined with plant nutrients contributed to alleviating metal toxicity symptoms of plant. Hoagland’s solution and peat were highlighted in the present phytoextraction trial, and recommended as soil additives.
显示更多 [+] 显示较少 [-]Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil
2020
Ali, Amjad | Shaheen, Sabry M. | Guo, Di | Li, Yiman | Xiao, Ran | Fazl-i-Wahid, | Azeem, Muhammad | Sohail, Kamran | Zhang, Tao | Rinklebe, Jörg | Li, Ronghua | Zhang, Zengqiang
The aim of this study was to elucidate the effects of apricot shell-derived biochar (ASB) and apple tree-derived biochar (ATB) on soil properties, plant growth, microbial communities, enzymatic activities, and Zn and Cd fractionation and phytoavailability in mining soils. Smelter soil contaminated by Zn (1860.0 mg kg⁻¹) and Cd (39.9 mg kg⁻¹) was collected from Fengxian, China, treated with different doses (0 (control), 1, 2.5, 5, and 10% w/w) of both biochars and cultivated by Brassica juncea in a greenhouse pot experiment. The acid-soluble, reducible, oxidizable, and residual fraction and plant tissue concentrations of Zn and Cd were determined. Biochar addition improved plant growth (22.6–29.4%), soil pH (up to 0.94 units), and soil organic matter (up to 4-fold) compared to the control. The ASB and ATB, particularly ATB, reduced the acid-soluble (21–26% for Zn and 15–35% for Cd) and the reducible (9–36% for Zn and 11–19% for Cd) fractions of Zn and Cd and altered these fractions in the organic and residual fractions. Therefore, the biochars decreased the metal concentrations in the roots (36–41% for Zn and 33–37% for Cd) and shoots (25–31% for Zn and 20–29% for Cd), which might be due to the increase in pH, biochar liming effects, and metal sorption by the biochar. The biochars impact on the bacterial community composition was selective. The ASB and ATB decreased the activities of soil β-glucosidase, dehydrogenase, and alkaline phosphatase while increasing the urease activity. The biochars, particularly ATB, can be considered as effective soil amendments for reducing the phytotoxicity of Zn and Cd in contaminated soils, improving plant growth, enhancing the abundance of specific bacterial groups and increasing urease activity; however, more attention should be paid to their negative effects on the activities of β-glucosidase, dehydrogenase, and alkaline phosphatase.
显示更多 [+] 显示较少 [-]Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils
2019
Gurajala, Hanumanth Kumar | Cao, Xuerui | Tang, Lin | Ramesh, Thanusree Mallakuntla | Lu, Min | Yang, Xiaoe
Heavy metal removal by phytoremediation bears a great potential to decontaminate soils and Brassica juncea L. (Indian mustard) seems to be a possible candidate species for this purpose. A field experiment was conducted to compare the efficiency of eighty Indian mustard cultivars for phytoextraction of cadmium (Cd) and lead (Pb) from bimetal contaminated soil. Our results indicated that total Cd and Pb concentrations in the shoots and roots were in the range of 2.43 ± 0.00 to 0.31 ± 0.02 mg/kg and 2.94 ± 0.05 to 0.44 ± 0.03 mg/kg and 5.33 ± 0.76 to 0.47 ± 0.20 mg/kg and 3.78 ± 0.06 to 0.16 ± 0.08 mg/kg. Significant differences based on the translocation factors indicated that root-to-shoot transfer is higher for Pb (3.87 ± 0.12 to 0.48 ± 0.03) than Cd (3.38 ± 0.05 to 0.22 ± 0.01). Furthermore, significant correlations between dry weights, Cd and Pb concentrations and uptake in both shoots and roots were observed, but translocation factor showed a negative correlation with roots, but not in shoots. Among 80 genotypes of Indian mustard IM-25, IM-13 and IM-65 for Cd and IM-79, IM-24 and IM-32 for Pb seems to perform well for phytoextraction. The results of the field experiment suggest that certain Brassica juncea L. cultivars are suitable for removal of Cd and Pb in low to moderately contaminated soils.
显示更多 [+] 显示较少 [-]Ethylene-nitrogen synergism induces tolerance to copper stress by modulating antioxidant system and nitrogen metabolism and improves photosynthetic capacity in mustard
2022
Rather, Bilal A. | Mir, Iqbal R. | Masood, Asim | Anjum, Naser A. | Khan, Nafees A.
This study aimed to test the efficiency of ethylene (Eth; 200 µL L⁻¹ ethephon) in presence or absence of nitrogen (N; 80 mg N kg⁻¹ soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg⁻¹ soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H₂O₂, and superoxide anion, O₂•⁻), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.
显示更多 [+] 显示较少 [-]Enhanced phytoremediation of uranium-contaminated soils by Indian mustard (Brassica juncea L.) using slow release citric acid
2021
Wang, Guanghui | Wang, Bing | Fan, Wenzhe | Deng, Nansheng
In this study, a novel slow release carrier for the controlled release of citric acid (CA), hydroxypropyl chitosan-graft-carboxymethyl-β-cyclodextrin (HPCS-g-CMCD) was synthesized by the grafting reaction of carboxymethyl-β-cyclodextrin (CMCD) with hydroxypropyl chitosan (HPCS), and the structural characteristics of HPCS-g-CMCD were confirmed by FT-IR, TGA, and NMR. Based on HPCS-g-CMCD and CA, slow release citric acid (SRCA) was prepared by a spray drying method. HPCS-g-CMCD carrier has a better slow release performance for CA compared to HPCS and CMCD, and CA release mechanism was attributed to a Fickian diffusion. Furthermore, the release behavior of uranium in contaminated soil could be effectively controlled by SRCA. The effects of SRCA on improving the phytoremediation capacity in uranium-contaminated soil were investigated using Brassica juncea, which were grown in pots containing soil with uranium at 56 mg kg⁻¹. After 50 days of growth, 5 mmol kg⁻¹ of CA, SRCA I, SRCA II, and SRCA III was applied, respectively. The results showed that slow release citric acid could enhance the uptake of uranium in Indian mustard. Uranium concentration in the root with SRCA I treatment was increased by 80.25% compared to the control, and the uranium removal efficiency of the SRCA I treatment was 1.66-fold greater than that of the control. Simultaneously, the leaching loss of uranium in SRCA I-treated soil was decreased by 37.35% compared to CA-treated soil. As a promising remediation strategy, SRCA-assisted phytoremediation may provide a kind of feasible technology with low leaching risk for remediation of uranium-contaminated soils.
显示更多 [+] 显示较少 [-]Performance of the emerging biochar on the stabilization of potentially toxic metals in smelter- and mining-contaminated soils
2020
Ren, Chunyan | Guo, Di | Liu, Xiangyu | Li, Ronghua | Zhang, Zengqiang
Soil potentially toxic metals (PTMs) pollution caused by anthropogenic activities has become serious concern with respect to the crop safety production. In this study, an emerging biochar derived from kiwi pruning branches waste was employed as amendment aiming to evaluate its remediation potential on smelter- and mining-contaminated soils. The effect of biochar on the soil physicochemical properties, leachability, and chemical fractions acted on stabilization practice of PTMs in soil was investigated. The results showed that the addition of biochar increased the soil pH, cation exchange capacity, organic matter, and enzymatic activities (dehydrogenase, urease, and sucrase) but reduced the extraction toxicity of PTMs in both smelter (Fengxian, FX) and mining (Tongguan, TG) soils. The fraction analysis showed that the maximum reduction of exchangeable fraction of Cd, Zn, and Pb in the 4% biochar amended soils decreased by 11.1, 13.3, and 24.7% in FX soil and 7.67, 22.8, and 7.89% in TG soil, respectively, in comparison with to control (no biochar added). Additionally, the residual fraction of Cd, Zn, and Pb increased by 55.9, 7.14, and 11.0% in FX soil and 23.7, 5.86, and 10.0% in TG soil, respectively. The further greenhouse experiment showed that the Indian mustard (Brassica juncea) production increased with the increasing application dosages of biochar, while the PTMs uptakes in plant notably decreased after amendments. Conversion of kiwi pruning branches waste into emerging biochar benefits the agricultural waste recycling utilization and enhances PTMs-contaminated soil remediation in practice. Graphical abstract
显示更多 [+] 显示较少 [-]