细化搜索
结果 1-10 的 13
Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China
2018
Zheng, Lishan | Yang, Xiaoyang | Lai, Senchao | Ren, Hong | Yue, Siyao | Zhang, Yingyi | Huang, Xin | Gao, Yuanguan | Sun, Yele | Wang, Zifa | Fu, Pingqing
Fine particles (PM2.5) samples, collected at Weizhou Island over the Gulf of Tonkin on a daytime and nighttime basis in the spring of 2015, were analyzed for primary and secondary organic tracers, together with organic carbon (OC), elemental carbon (EC), and stable carbon isotopic composition (δ13C) of total carbon (TC). Five organic compound classes, including saccharides, lignin/resin products, fatty acids, biogenic SOA tracers and phthalic acids, were quantified by gas chromatography/mass spectrometry (GC/MS). Levoglucosan was the most abundant organic species, indicating that the sampling site was under strong influence of biomass burning. Based on the tracer-based methods, the biomass-burning-derived fraction was estimated to be the dominant contributor to aerosol OC, accounting for 15.7% ± 11.1% and 22.2% ± 17.4% of OC in daytime and nighttime samples, respectively. In two episodes E1 and E2, organic aerosols characterized by elevated concentrations of levoglucosan as well as its isomers, sugar compounds, lignin products, high molecular weight (HMW) fatty acids and β-caryophyllinic acid, were attributed to the influence of intensive biomass burning in the northern Southeast Asia (SEA). However, the discrepancies in the ratios of levoglucosan to mannosan (L/M) and OC (L/OC) as well as the δ13C values suggest the type of biomass burning and the sources of organic aerosols in E1 and E2 were different. Hardwood and/or C4 plants were the major burning materials in E1, while burning of softwood and/or C3 plants played important role in E2. Furthermore, more complex sources and enhanced secondary contribution were found to play a part in organic aerosols in E2. This study highlights the significant influence of springtime biomass burning in the northern SEA to the organic molecular compositions of marine aerosols over the Gulf of Tonkin.
显示更多 [+] 显示较少 [-]The growth response of Alternanthera philoxeroides in a simulated post-combustion emission with ultrahigh [CO2] and acidic pollutants
2009
Xu, Cheng-Yuan | Griffin, Kevin L. | Blazier, John C. | Craig, Elizabeth C. | Gilbert, Dominique S. | Sritrairat, Sanpisa | Anderson, O Roger | Castaldi, Marco J. | Beaumont, E. Larry
Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO₂ that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO₂] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 μmol mol⁻¹ [CO₂] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 μmol mol⁻¹ [CO₂], but declined when [CO₂ rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO₂ and NO₂) significantly offset the CO2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO₂ from the power plant emissions to optimize growth in commercial green house could be viable. Diluted post-combustion emission gas from fossil fuel fired power plants stimulate the growth of C₃ plant.
显示更多 [+] 显示较少 [-]Sources and preservation of organic matter in soils of the wetlands in the Liaohe (Liao River) Delta, North China
2013
Lin, Tian | Ye, Siyuan | Ma, Chuanliang | Ding, Xigui | Brix, Hans | Yuan, Hongming | Chen, Yingjun | Guo, Zhigang
Total organic carbon, total nitrogen, δ13Corg, δ15N, and aliphatic and polyaromatic hydrocarbons of fifty-five soil samples collected from the coastal wetlands of the Liaohe Delta were measured, in order to determine the sources and possible preservation of organic matter (OM). The δ15N and δ13Corg values in the samples ranged from 3.0‰ to 9.4‰ and from −30.4‰ to −20.3‰, respectively, implying that the OM in the soils is predominantly derived from C3 plant. The long-chain n-alkanes had a strong odd-over-even carbon number predominance, suggesting a significant contribution from waxes of higher plants. The ubiquitous presence of unresolved complex mixture, alkylated polycylic aromatic hydrocarbons and typical biomarkers of petroleum hydrocarbons (pristane, phytane, hopanes and steranes) indicates that there is a contribution of petroleum hydrocarbons to the organic carbon pool in the wetland soils. P. australis-vegetated wetlands have strong potentials for the preservation of organic carbon in the wetlands.
显示更多 [+] 显示较少 [-]Different physiological responses of C3 and C4 plants to nanomaterials
2021
Several studies have previously reported that nanomaterial uptake and toxicity in plants are species dependent. However, the differences between photosynthetic pathways, C3 and C4, following nanomaterial exposure are poorly understood. In the current work, wheat and rice, two C3 pathway species are compared to amaranth and maize, which utilize the C4 photosynthetic mechanism. These plants were cultured in soils which were spiked with CuO, Ag, TiO₂, MWCNT, and FLG nanomaterials. Overall, the C4 plant exhibited higher resilience to NM stress than C3 plants. In particular, significant differences were observed in chlorophyll contents with rice returning a 40.9–54.2% decrease compared to 3.5–15.1% for maize. Fv/Fm levels were significantly reduced by up to 51% in rice whereas no significant reductions were observed in amaranth and maize. Furthermore, NM uptake in the C3 species was greater than that in C4 plants, a trend that was also seen in metal concentration. TEM results showed that CuO NPs altered the chloroplast thylakoid structure in rice leaves and a large number of CuO NPs were observed in the vascular sheath cells. In contrast, there were no significant changes in the chloroplasts in the vascular sheath and no significant CuO NPs were found in maize leaves. This study was the first to systematically characterize the effect of metal and carbon-based nanomaterials in soil on C3 and C4 plants, providing a new perspective for understanding the impact of nanomaterials on plants.
显示更多 [+] 显示较少 [-]Roadway Deicer Effects on the Germination of Native Grasses and Forbs
2014
Dudley, Megan M. | Jacobi, William R. | Brown, Cynthia S.
Normal seed germination of native herbaceous species can be reduced by high concentrations of deicer products and their constituent salts. Chloride salts are commonly used during the winter months in temperate climates to remove ice and snow. Although these products greatly improve driving conditions, they can have detrimental effects on the vegetation growing along highways. The purpose of this laboratory study was to determine the impact of a magnesium-based deicer product and a sodium-based deicer product and the major salts they contain on the germination and viability of several species of grasses and forbs native to Colorado and planted in revegetation seedings there. Seeds were placed on blotter paper saturated with either a water control, one of three concentrations of each of the deicing solutions, or one of three concentrations of a pure NaCl or MgCl₂ solution. Increasing concentrations of salt ions generally resulted in delayed and reduced normal seed germination, especially the sodium- and magnesium-based deicer solutions. Germination for most species was lower when seeds were grown in deicer solution compared with germination percent of seeds grown in the pure salt solutions. Some species were more tolerant of one of the salts and deicers. Species with C4 photosynthetic pathway were more tolerant than C3 species of high concentrations of both deicer products. Those species which attained the highest germination percent under moderate or high solution concentrations included blue grama, buffalograss, little bluestem, mountain brome, and slender wheatgrass.
显示更多 [+] 显示较少 [-]Modern climate and vegetation variability recorded in organic compounds and carbon isotopic compositions in the Dianchi watershed
2015
Xu, Meina | Wang, Yanhua | Yang, Hao | Xie, Biao | Niu, Xiaoyin
The aliphatic hydrocarbons distribution and compound-specific characteristics of carbon isotopic compositions in the sediments from the small catchment (197 km²) of the Dianchi watershed were investigated for identification of modern climate and vegetation variations in the study area. Results show that a regular bimodal n-alkanes distribution ranged from nC₁₆ to nC₃₃, with strong dominance at nC₁₇ for short-chain n-alkanes and nC₃₁ for long-chain n-alkanes. Mass chromatogram of total fatty acids also indicates corresponding mixed contribution of algae, hydrophilous non-emergent (C₄ plants) and terrestrial plants (C₃ plants) to sedimentary organic matter (OM). At the depth of −24 to −25 cm (early 1970s), nC₃₁/nC₁₇ and terrestrial to aquatic ratio of hydrocarbons (TAR) values decrease, suggesting a shift of OM origins from C₃ terrestrial plants to algae-derived C₄ plants. The highest water stage in 1971 was found to be recorded in the particle size (<4 μm). For long-chain alkanes, the values of δ ¹³Cₒᵣg and δ ¹³C ₙ₋ₐₗₖₐₙₑₛ varied from −26.9 to −22.4 and −33.4 to −27.9 ‰, respectively. Population growth and economic development led to a demand for abundant habitable and cultivable land. Due to unreasonable land expansion, the primordial forest sporadically distributed. A mixture of C₃ and C₄ plants probably replaced C₃ plants as the sources of OM in the past 10 years. The changes of land-use types and severe drought resulted in the excessive OM inputs to the watershed.
显示更多 [+] 显示较少 [-]Phytoremediation of carbamazepine and its metabolite 10,11-epoxycarbamazepine by C3 and C4 plants
2015
Ryšlavá, Helena | Pomeislová, Alice | Pšondrová, Šárka | Hýsková, Veronika | Smrček, Stanislav
The anticonvulsant drug carbamazepine is considered as an indicator of sewage water pollution: however, its uptake by plants and effect on metabolism have not been sufficiently documented, let alone its metabolite (10,11-epoxycarbamazepine). In a model system of sterile, hydroponically cultivated Zea mays (as C₄ plant) and Helianthus annuus (as C₃ plant), the uptake and effect of carbamazepine and 10,11-epoxycarbamazepine were studied in comparison with those of acetaminophen and ibuprofen. Ibuprofen and acetaminophen were effectively extracted from drug-supplemented media by both plants, while the uptake of more hydrophobic carbamazepine was much lower. On the other hand, the carbamazepine metabolite, 10,11-epoxycarbamazepine, was, unlike sunflower, willingly taken up by maize plants (after 96 h 88 % of the initial concentration) and effectively stored in maize tissues. In addition, the effect of the studied pharmaceuticals on the plant metabolism (enzymes of Hatch-Slack cycle, peroxidases) was followed. The activity of bound peroxidases, which could cause xylem vessel lignification and reduction of xenobiotic uptake, was at the level of control plants in maize leaves contrary to sunflower. Therefore, our results indicate that maize has the potential to remove 10,11-epoxycarbamazepine from contaminated soils.
显示更多 [+] 显示较少 [-]Soil labile and recalcitrant carbon and nitrogen dynamics in relation to functional vegetation groups along precipitation gradients in secondary grasslands of South China
2020
Feyissa, Adugna | Yang, Fan | Feng, Jiao | Wu, Junjun | Chen, Qiong | Cheng, Xiaoli
Soil labile and recalcitrant carbon (C) and nitrogen (N) are strongly controlled by plant inputs and climatic conditions. However, the interrelation of labile and recalcitrant pools with changes in plant functional groups (i.e., C3 and C4) along precipitation gradients is not fully understood. Here, we investigated the soil organic C and N (SOC and SON), labile C and N (LC and LN), recalcitrant C and N (RC and RN), and their isotopes (δ¹³C, and δ¹⁵N) in relation to C3 and C4 plant inputs from 20 sites across a 600-km precipitation gradient in secondary grasslands of South China. The SOC content decreased first slightly and then increased along precipitation gradients, largely due to the increase in C4 plant C inputs in the lower precipitation regions. In contrast, the SON content increased with increasing N inputs from C3 plant at higher precipitation regions. The LC and LN contents increased with increasing precipitation, whereas RC and RN did not change with precipitation. The LC and LN were correlated with plant C and N contents, as well as the mean annual precipitation, respectively. Increases in LC and LN stocks were tightly related to enhanced plant C and N inputs influenced by precipitation, suggesting stronger sensitivity of labile pools to both plant functional groups inputs and precipitation compared to the recalcitrant pool. Moreover, the δ¹³C values in RC declined with precipitation, while the δ¹⁵N values of both labile and recalcitrant N increased with increasing precipitation, further revealing that soil labile and recalcitrant C and N pools closely related to the shift in the C3 and C4 plant along precipitation gradients. Overall, our findings indicated that soil labile and recalcitrant fractions should be considered in context of precipitation under which plant inputs takes place in predicting soil C and N dynamics.
显示更多 [+] 显示较少 [-]Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition
2016
Hegde, Prashant | Kawamura, Kimitaka | Joshi, H. | Naja, M.
The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ¹³C and δ¹⁵N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. −24.0 ‰), mostly originated from biomass burning of C₄ plants. On the contrary, the aerosols in summer showed smaller δ¹³C values (−26.0 ‰), indicating that they are originated from vascular plants (mostly of C₃ plants). The secondary ions (i.e., SO₄²⁻, NH₄⁺, and NO₃⁻) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.
显示更多 [+] 显示较少 [-]Differential responses of C3 and CAM native Brazilian plant species to a SO2- and SPMFe-contaminated Restinga
2015
da Silva, Luzimar Campos | de Araújo, Talita Oliveira | Martínez, Carlos Alberto | de Almeida Lobo, Francisco | Azevedo, Aristéa Alves | Oliva, Marco Antonio
Aiming to evaluate responses in terms of growth rates, physiological parameters, and degree of sensitivity to SO₂ and SPMFₑ in Eugenia uniflora L. (Myrtaceae, a C₃ species) and Clusia hilariana Schlecht (Clusiaceae, a CAM species); saplings were exposed to emissions from a pelletizing factory for 7 months. The species were distributed along a transect (200, 500, 800, 1400, and 1700 m away from the emission source), and analyses were performed after 71, 118, and 211 days of exposure to the pollutants. E. uniflora received higher superficial deposition of particulate iron. The highest total iron foliar contents were observed 200 m away from the emission source in both plant species, while the highest total sulfur foliar contents were observed 200 m away in C. hilariana and 800 m away in E. uniflora. E. uniflora presented decreased values of height growth rate, number of necrotic leaves, chlorophyll analysis (SPAD index) and transpiration, in relation to the distances from the emission source. C. hilariana showed decreased values of height growth rate, number of leaves, number of necrotic leaves, total ionic permeability, stomatal conductance, transpiration, net CO₂ assimilation, and total dry matter, in relation to distances from the emission source. In relation to the days of exposure, both species presented increased number of necrotic leaves and foliar phytotoxicity index, and decreased values in the chlorophyll analysis. The two native plant species, both of which occur in the Brazilian Restinga, showed damage when exposed to emissions from an iron ore pelletizing factory. C. hilariana was considered the most sensitive species due to the decreased values in a higher number of variables after exposition.
显示更多 [+] 显示较少 [-]