细化搜索
结果 1-10 的 80
Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion
2022
Zhang, Zhenrong | Huang, Yaji | Zhu, Zhicheng | Yu, Mengzhu | Gu, Liqun | Wang, Xinyu | Liu, Yang | Wang, Ruyi
Serious pollution is caused by heavy metals (HMs) emission during sludge combustion treatment, but the addition of minerals has the ability to alleviate the migration of HMs to the gaseous state. In this study, HMs (As, Cr, Zn and Cu) behavior, speciation, and environmental risk during sludge combustion with CaO and montmorillonite (MMT) additive was investigated in the lab-scale tube furnace. The results showed that the sludge combustion was mainly determined by volatile matter. In general, CaO inhibited the volatilization of Cr, Zn, and Cu, but promoted As volatilization. MMT inhibited the volatilization of HMs, but the effect was not obvious at high temperatures. Besides, the improvement of retention effect was not found for Cr and Cu with the increase of CaO at 1000 °C, there might exist threshold value for CaO on HMs retention process. Meanwhile, CaO increased acid-soluble fraction of As significantly at high temperatures, decreased residual fraction of Cr by oxidation, converted Zn and Cu to residual fraction. MMT increased the acid-soluble fraction of As and residual fraction of Cr. In view of the HMs environmental risk in ash, the combustion temperature of sludge was necessary to control under 1000 °C and minerals additive amount was needed to manage above 1000 °C.
显示更多 [+] 显示较少 [-]Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration
2021
Nan, Hongyan | Yin, Jianxiang | Yang, Fan | Luo, Ying | Zhao, Ling | Cao, Xinde
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
显示更多 [+] 显示较少 [-]Development and deployment of integrated air pollution control, CO2 capture and product utilization via a high-gravity process: comprehensive performance evaluation
2019
Chen, Tse-Lun | Fang, Yun-Ke | Pei, Si-Lu | Pan, Shu-Yuan | Chen, Yi-Hung | Chiang, Pen-Chi
In this study, a proposed integrated high-gravity technology for air pollution control, CO2 capture, and alkaline waste utilization was comprehensively evaluated from engineering, environmental, and economic perspectives. After high-gravity technology and coal fly ash (CFA) leaching processes were integrated, flue gas air emissions removal (e.g., sulfate dioxide (SO2), nitrogen oxides (NOx), total suspended particulates (TSP)) and CO2 capture were studied. The CFA, which contains calcium oxide and thus, had high alkalinity, was used as an absorbent in removing air pollution residues. To elucidate the availability of technology for pilot-scale high-gravity processes, the engineering performance, environmental impact, and economic cost were simultaneously investigated. The results indicated that the maximal CO2, SO2, NOx, and TSP removal efficiencies of 96.3 ± 2.1%, 99.4 ± 0.3%, 95.9 ± 2.1%, and 83.4 ± 2.6% were respectively achieved. Moreover, a 112 kWh/t-CO2 energy consumption for a high-gravity process was evaluated, with capture capacities of 510 kg CO2 and 0.468 kg NOx per day. In addition, the fresh, water-treated, acid-treated, and carbonated CFA was utilized as supplementary cementitious materials in the blended cement mortar. The workability, durability, and compressive strength of 5% carbonated CFA blended into cement mortar showed superior performance, i.e., 53 MPa ±2.5 MPa at 56 days. Furthermore, a higher engineering performance with a lower environmental impact and lower economic cost could potentially be evaluated to determine the best available operating condition of the high-gravity process for air pollution reduction, CO2 capture, and waste utilization.
显示更多 [+] 显示较少 [-]Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants
2002
Entry, J.A. | Sojka, R.E. | Watwood, M. | Ross, C.
Waste streams associated with a variety of agricultural runoff sources are major contributors of nutrients, pesticides and enteric microorganisms to surface and ground waters. Water soluble anionic polyacrylamide (PAM) was found to be a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1-10 g m (super -3) in furrow irrigation water. Water flowing from PAM treated irrigation furrows show large reductions in sediment, nutrients and pesticides. Recently PAM and PAM+CaO and PAM+Al(SO (sub 4) ) (sub 3) mixtures have been shown to filter bacteria, fungi and nutrients from animal wastewater. Low concentrations of PAM [175-350 g PAM ha (super -1) as PAM or as PAM+CaO and PAM+Al(SO (sub 4) ) mixture] applied to the soil surface, resulted in dramatic decreases (10 fold) of total, coliform and fecal streptococci bacteria in cattle, fish and swine wastewater leachate and surface runoff. PAM treatment also filtered significant amounts of NH (sub 4) , PO (sub 4) and total P in cattle and swine wastewater. This points to the potential of developing PAM as a water quality protection measure in combination with large-scale animal feeding operations. Potential benefits of PAM treatment of animal facility waste streams include: (1) low cost, (2) easy and quick application, (3) suitability for use with other pollution reduction techniques. Research on the efficacy of PAM for removal of protozoan parasites and viruses and more thorough assessment of PAM degradation in different soils is still needed to completely evaluate PAM treatment as an effective waste water treatment. We will present analysis and feasibility of using PAM, PAM+Al(SO (sub 4) ) (sub 3) , and PAM+CaO application for specific applications. Our results demonstrate their potential efficacy in reducing sediment, nutrients and microorganisms from animal production facility effluents. Abstract
显示更多 [+] 显示较少 [-]Removal of phosphate from water by paper mill sludge biochar
2022
Zhang, Ming | Lin, Kun | Li, Xiaodian | Wu, Lijun | Yu, Jie | Cao, Shuang | Zhang, Dong | Xu, Liheng | Parikh, Sanjai J. | Ok, Yong Sik
Biochar modification by metals and metal oxides is considered a practical approach for enhancing the adsorption capacity of anionic compounds such as phosphate (P). This study obtained paper mill sludge (PMS) biochar (PMSB) via a one-step process by pyrolyzing PMS waste containing ferric salt to remove anionic P from water. The ferric salt in the sludge was transformed into ferric oxide and zero-valent-iron (Fe⁰) in N₂ atmosphere at pyrolysis temperatures ranging from 300 to 800 °C. The maximum adsorption (Qₘ) of the PMSBs for P ranged from 9.75 to 25.19 mg P/g. Adsorption is a spontaneous and endothermic process, which implies chemisorption. PMSB obtained at 800 °C (PMSB800) exhibited the best performance for P removal. Fe⁰ in PMSB800 plays a vital role in P removal via adsorption and coprecipitation, such as forming the ≡Fe–O–P ternary complex. Furthermore, the possible chemical precipitation of P by CaO decomposed from calcite (CaCO₃; an additive of paper production that remains in PMS) may also contribute to the removal of P by PMSB800. Moreover, PMSBs can be easily separated magnetically from water after application and adsorption. This study achieved a waste-to-wealth strategy by turning waste PMS into a metal/metal oxide-embedded biochar with excellent P removal capability and simple magnetic separation properties via a one-step pyrolysis process.
显示更多 [+] 显示较少 [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
显示更多 [+] 显示较少 [-]Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration
2022
Morales Arteaga, Juan Francisco | Gluhar, Simon | Kaurin, Anela | Lestan, Domen
Soil chemistry of toxic metalloids and metals differs, making their simultaneous removal difficult. Soil contaminated with As, Pb, Zn and Cd was washed with oxalic acid, Na-dithionite and EDTA solution. Toxic elements were removed from the washing solution by alkalinisation with CaO to a pH 12.5: As was co-precipitated with Fe from Fe-EDTA chelate formed after the soil washing. The toxic metals precipitated after substitution of their EDTA chelates with Ca. The novel method was scaled up on the ReSoil® platform. On average, 60, 76, 29, and 53% of As, Pb, Zn, and Cd were removed, no wastewater was generated and EDTA was recycled. Addition of zero-valent iron reduced the toxic elements’ leachability. Remediation was most effective for As: phytoaccessibility (CaCl₂ extraction), mobility (NH₄NO₃), and accessibility from human gastric and gastrointestinal phases were reduced 22, 104, 6, and 51 times, respectively. Remediation increased pH but had no effect on soil functioning assessed by fluorescein diacetate hydrolysis, dehydrogenase, β-glucosidase, urease, acid and alkaline phosphatase activities. Brassica napus produced 1.9 times more biomass on remediated soil, accumulated no As and 5.0, 2.6, and 9.0 times less Pb, Zn and Cd, respectively. We demonstrated the novel remediation technology as cost-efficient (material cost = 41.86 € t⁻¹) and sustainable.
显示更多 [+] 显示较少 [-]Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms
2022
Rezaie, Fatemeh | Panahi, Mahdi | Lee, Jongchun | Lee, Jungsub | Kim, Seonhong | Yoo, Juhee | Lee, Saro
The adverse health effects associated with the inhalation and ingestion of naturally occurring radon gas produced during the uranium decay chain mean that there is a need to identify high-risk areas. This study detected radon-prone areas using a geographic information system (GIS)-based probabilistic and machine learning methods, including the frequency ratio (FR) model and a convolutional neural network (CNN). Ten influencing factors, namely elevation, slope, the topographic wetness index (TWI), valley depth, fault density, lithology, and the average soil copper (Cu), calcium oxide (Cao), ferric oxide (Fe₂O₃), and lead (Pb) concentrations, were analyzed. In total, 27 rock samples with high activity concentration index values were divided randomly into training and validation datasets (70:30 ratio) to train the models. Areas were categorized as very high, high, moderate, low, and very low radon areas. According to the models, approximately 40% of the study area was classified as very high or high risk. Finally, the radon potential maps were validated using the area under the receiver operating characteristic curve (AUC) analysis. This showed that the CNN algorithm was superior to the FR method; for the former, AUC values of 0.844 and 0.840 were obtained using the training and validation datasets, respectively. However, both algorithms had high predictive power. Slope, lithology, and TWI were the best predictors of radon-affected areas. These results provide new information regarding the spatial distribution of radon, and could inform the development of new residential areas. Radon screening is important to reduce public exposure to high levels of naturally occurring radiation.
显示更多 [+] 显示较少 [-]Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi, China
2021
Yang, Yeyu | Li, Cheng | Yang, Zhongfang | Yu, Tao | Jiang, Hongyu | Han, Min | Liu, Xu | Wang, Jue | Zhang, Qizuan
Cadmium (Cd) contamination in soil and crops caused by mining activities has become a prevalent concern in the world. Given that different crops have varying Cd bioaccumulation factors, crops with low Cd bioaccumulation abilities can be selected for the safe usage of Cd -contaminated lands. This study aimed to investigate Cd contamination in soil and crops and the influencing factors of soil Cd activity in a tin mining area (TMA) and control area (CA) and to put forward suggestions for the safe usage of farmlands by developing prediction models of Cd content in different crop grains. We collected 72 and 40 pairs of rice and maize grain samples, respectively, along with their rhizosphere soil samples and 6176 topsoil samples. The results showed that compared with the CA, the Cd pollution was more severe in the cultivated soil and crop grains around TMA. Furthermore, rice has a strong ability to transport Cd from soil to grains, whereas maize has a poor Cd uptake ability. The total organic carbon, CaO, pH, and Mn in soil play key roles in the transfer of Cd from soil to crop grains. Using these parameters and Cd concentration in soil, two sets of accurate Cd prediction models were developed for maize and rice. Based on the Cd concentration in the topsoil and predicted Cd concentration in crop grains, the safe utilization scheme of farmland was proposed. The proportions of priority protection, safe exploitation, planting adjustment, and strict control were 72.59%, 22.77%, 3.16%, and 1.48% in the TMA, respectively. The values reached 80.51% (priority protection), 19.12% (safe exploitation), 0.37% (planting adjustment), and 0% (strict control) in the CA. Thus, given the difference between Cd accumulation in rice and maize, adjustment of planting crops in contaminated farmlands can be applied to maximize the use of farmland resources.
显示更多 [+] 显示较少 [-]Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils
2020
Mu, Jing | Hu, Zhengyi | Huang, Lijuan | Xie, Zijian | Holm, Peter E.
Industrial by-products provide materials for remediation measures. In this study, a silicon-iron amendment was prepared from residue originating from acid-extracted copper (Cu) tailings based on thermal activation at temperatures ranging from 550 °C to 1150 °C for 30 min with the use of additives (CaO, Na₂CO₃, NaOH). The remediation performance of the amendment was evaluated through soil incubation and greenhouse pot experiments with vetiver (Vetiveria zizanioides). The results showed that the highest levels of soluble Si (6.11% of the total Si) and Fe (2.3% of the total Fe) in the amendment were achieved with thermal activation at 1150 °C for 30 min using an optimal ratio between residue and additives (residue: CaO: Na₂CO₃: NaOH = 1: 0.4: 0.4: 0.2). Heavy metal release indicated that the amendment could be safely used for soil remediation. The incubation experiments showed that the DTPA-extractable Cd, Cr and Pb in contaminated soils decreased with increasing amendment rate, which was not observed for As. The amendment-induced decrease in the Cd, Cr and Pb availability in contaminated soils could be explained by pH-change induced immobilization, Fe-induced chemisorption, Si-induced co-precipitation, and Ca-induced ion exchange. Correlation analysis suggested that there were significant negative correlations between DTPA-extractable Cd, Cr and Pb and the pH, Fe, Si, and Ca in soil pore water and soil. The most suitable amendment rate was determined to be 1% by balancing the efficacy and wise utilization of the amendment. The pot experiment demonstrated that the amendment promoted the vetiver growth and stimulated the accumulation of Cd and Cr in the roots. The amendment was proved to be promising for the phytostabilization of Cd, Cr and Pb in contaminated soils. Further investigations are required to determine whether the amendment is a tool for the long-term remediation of multi-metal-contaminated soils at the field scale.
显示更多 [+] 显示较少 [-]