细化搜索
结果 1-3 的 3
Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review
2021
Abd El-Hack, Mohamed E. | El-Saadony, Mohamed T. | Shehata, Abdelrazeq M. | Arif, Muhammad | Paswan, Vinod K. | Batiha, Gaber El-Saber | Khafaga, Asmaa F. | Elbestawy, Ahmed R.
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
显示更多 [+] 显示较少 [-]Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure
2020
Van den Meersche, Tina | Rasschaert, Geertrui | Vanden Nest, Thijs | Haesebrouck, Freddy | Herman, Lieve | Van Coillie, Els | Van Weyenberg, Stephanie | Daeseleire, Els | Heyndrickx, Marc
Fertilization with animal manure is one of the main routes responsible for the introduction of antibiotic residues, antibiotic resistance genes, and zoonotic bacteria into the environment. The aim of this study was to assess the effect of the use of pig (swine) manure as a fertilizer on the presence and fate of six antibiotic residues, nine antibiotic resistance genes, and bacteria (zoonotic bacteria Salmonella spp. and Campylobacter spp. and E. coli as indicator for Gram-negative bacterial species of the microbiota of livestock) on five fields. To the best of our knowledge, the present study is the first to assess a multitude of antibiotic residues and resistance to several classes of antibiotics in pig manure and in fertilized soil over time in a region with an intensive pig industry (Flanders, Belgium). The fields were sampled at five consecutive time points, starting before fertilization up to harvest. Low concentrations of antibiotic residues could be observed in the soils until harvest. The antibiotic resistance genes studied were already present at background levels in the soil environment prior to fertilization, but after fertilization with pig manure, an increase in relative abundance was observed for most of them, followed by a decline back to background levels by harvest-time on all of the fields studied. No apparent differences regarding the presence of antibiotic resistance genes in soils were observed between those fertilized with manure that either contained antibiotic residues or not. With regard to dissemination of resistance, the results presented in this study confirm that fertilization with animal manure directly adds resistance genes to the soil. In addition, it shows that this direct mechanism may be more important than possible selective pressure in soil-dwelling bacteria exerted by antibiotic residues present in the manure. These results also indicate that zoonotic bacteria detected in the manure could be detected in the soil environment directly after fertilization, but not after 1 month. In conclusion, although some antibiotic residues may be present in both manure and soil at concentrations to exert selective pressure, it seems that antibiotic resistance is mostly introduced directly to soil through fertilization with animal manure.
显示更多 [+] 显示较少 [-]Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds
2018
Huang, Yannan | Truelstrup Hansen, Lisbeth | Ragush, Colin M. | Jamieson, Rob C.
Wastewater stabilization ponds (WSPs) are commonly used to treat municipal wastewater in Arctic Canada. The biological treatment in the WSPs is strongly influenced by climatic conditions. Currently, there is limited information about the removal of fecal and pathogenic bacteria during the short cool summer treatment season. With relevance to public health, the objectives of this paper were to determine if treatment in arctic WSPs resulted in the disinfection (i.e., removal of fecal indicator bacteria, Escherichia coli) and removal of selected human bacterial pathogens from the treated effluent. The treatment performance, with focus on microbial removal, was assessed for the one-cell WSP in Pond Inlet (Nunavut [NU]) and two-cell WSP in Clyde River (NU) over three consecutive (2012–2014) summer treatment seasons (late June-early September). The WSPs provided a primary disinfection treatment of the wastewater with a 2–3 Log removal of generic indicator E. coli. The bacterial pathogens Salmonella spp., pathogenic E. coli, and Listeria monocytogenes, but not Campylobacter spp. and Helicobacter pylori, were detected in the untreated and treated wastewater, indicating that human pathogens were not reliably removed. Seasonal and annual variations in temperature significantly (p < 0.05) affected the disinfection efficiency. Improved disinfection and pathogen removal was observed for the two-cell system in Clyde River as compared to the one-cell system in Pond Inlet. A quantitative microbial risk assessment should be performed to determine if the release of low levels of human pathogens into the arctic environment poses a human health risk.
显示更多 [+] 显示较少 [-]