细化搜索
结果 1-10 的 112
Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents 全文
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents 全文
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
显示更多 [+] 显示较少 [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents 全文
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
显示更多 [+] 显示较少 [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents 全文
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrusvladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew. Insecticides recommended in Integrated Pest Management programs reach honeydew and kill beneficial insects that feed on it.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, D. | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro | CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) | Generalitat Valenciana | Ministerio de Economía y Competitividad (España)
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew. | This research was partially funded by an Instituto Nacional de Investigaciones Agrarias (INIA) (Project RTA2017-00095) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. J.G.C was supported by the Spanish Ministry of Economy and Competitiveness, Ramón y Cajal Program (RYC-2013-13834) and M.C.A was recipient of grant from INIA (CPD2016-0085).
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew. Insecticides recommended in Integrated Pest Management programs reach honeydew and kill beneficial insects that feed on it.
显示更多 [+] 显示较少 [-]Effects of low-levels of three hexabromocyclododecane diastereomers on the metabolic profiles of pak choi leaves using high-throughput untargeted metabolomics approach 全文
2018
Zhang, Yanwei | Guo, Qiqi | Tan, Dongfei | He, Zeying | Wang, Yuehua | Liu, Xiaowei
The ecological toxicity of hexabromocyclododecane (HBCD) on animals, including fish and mice, has been reported, but its effects in plants, particularly its toxic mechanism, have rarely been investigated. An untargeted metabolomics approach for comprehensive assessment was selected to study the alterations in the metabolic profiles in pak choi leaves induced by exposure to trace-level amounts of HBCD diastereomers over 30 days. A supervised orthogonal partial least-squares-discriminant analysis (OPLS-DA) was performed to investigate differences between the HBCD and control groups. The discriminating metabolites were identified using public databases. The results indicated that the toxicity of the HBCD diastereomers was ordered as γ-HBCD > α-HBCD > β-HBCD. 13 metabolites were identified as potential biomarkers to discriminate the presence of HBCD toxicity. The lipid, carbohydrate, nucleotide and amino acid metabolic pathways affected were found in accordance with animals and humans, and also HBCD could induce the interference of the secondary metabolite pathways. The system of the stress defences was activated, including signalling pathway, antioxidant defence system, shikimate and phenylpropanoid metabolism. The carbohydrate and amino acid metabolism were disturbed by HBCD intervention, and the lipid, amino acid and secondary metabolite metabolism were regulated for HBCD stress prevention. These results provide insights into the mechanism and degree of HBCD phytotoxicity.
显示更多 [+] 显示较少 [-]Environmentally relevant microplastic exposure affects sediment-dwelling bivalves 全文
2018
Bour, Agathe | Haarr, Ane | Keiter, Steffen | Hylland, Ketil
Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4–6; 20–25 and 125–500 μm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.
显示更多 [+] 显示较少 [-]Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics 全文
2016
Cappello, Tiziana | Pereira, Patrícia | Maisano, Maria | Mauceri, Angela | Pacheco, Mario | Fasulo, Salvatore
Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance (1H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the evaluation of Hg toxicity mechanisms in wild fish under realistic environmental conditions, uncovering tissue-specificities regarding Hg toxic effects namely in gills and liver.
显示更多 [+] 显示较少 [-]Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects 全文
2022
Le, Ve Van | Ko, So-Ra | Kang, Mingyeong | Lee, Sang-Ah | Oh, Hee-Mock | Ahn, Chi-Yong
The excessive proliferation of Microcystis aeruginosa can lead to ecological damage, economic losses, and threaten animal and human health. For controlling Microcystis blooms, microorganism-based methods have attracted much attention from researchers because of their eco-friendliness and species-specificity. Herein, we first found that a Paucibacter strain exhibits algicidal activity against M. aeruginosa and microcystin degradation capability. The algicidal activity of DH15 (2.1 × 10⁴ CFU/ml) against M. aeruginosa (2 × 10⁶ cells/ml) was 94.9% within 36 h of exposure. DH15 also degraded microcystin (1.6 mg/L) up to 62.5% after 72 h. We demonstrated that the algicidal activity of DH15 against M. aeruginosa can be mediated by physical attachment and indirect attack: (1) Both washed cells and cell-free supernatant could kill M. aeruginosa efficiently; (2) Treatment with DH15 cell-free supernatants caused oxidative stress, altered the fatty acid profile, and damaged photosynthetic system, carbohydrate, and protein metabolism in M. aeruginosa. The combination of direct and indirect attacks supported that strain DH15 exerts high algicidal activity against M. aeruginosa. The expression of most key genes responsible for photosynthesis, antioxidant activity, microcystin synthesis, and other metabolic pathways in M. aeruginosa was downregulated. Strain DH15, with its microcystin degradation capacity, can overcome the trade-off between controlling Microcystis blooms and increasing microcystin concentration. Our findings suggest that strain DH15 possesses great potential to control outbreaks of Microcystis blooms.
显示更多 [+] 显示较少 [-]Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish 全文
2022
Wang, Min-Chen | Furukawa, Fumiya | Wang, Jingwei | Peng, Hui-Wen | Lin, Ching-Chun | Lin, Tzu-Hao | Tseng, Yung-Che
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
显示更多 [+] 显示较少 [-]Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback 全文
2022
Chen, Xiaomeng | Du, Zhuang | Guo, Tong | Wu, Junqiu | Wang, Bo | Wei, Zimin | Jia, Liming | Kang, Kejia
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
显示更多 [+] 显示较少 [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird 全文
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
显示更多 [+] 显示较少 [-]Exposure to ZnO nanoparticles alters neuronal and vascular development in zebrafish: Acute and transgenerational effects mitigated with dissolved organic matter 全文
2018
Kteeba, Shimaa M. | El-Ghobashy, Ahmed E. | El-Adawi, Hala I. | El-Rayis, Osman A. | Sreevidya, Virinchipuram S. | Guo, Laodong | Svoboda, Kurt R.
Exposure to ZnO-nanoparticles (NPs) in embryonic zebrafish reduces hatching rates which can be mitigated with dissolved organic material (DOM). Although hatching rate can be a reliable indicator of toxicity and DOM mitigation potential, a fish that has been exposed to ZnO-NPs or any other toxicant may also exhibit other abnormal phenotypes not readily detected by the unaided eye. In this study, we moved beyond hatching rate analysis to investigate the consequences of ZnO-NPs exposure on the nervous and vascular systems in developing zebrafish. Zebrafish exposed to ZnO-NPs (1–100 ppm) exhibited an array of cellular phenotypes including: abnormal secondary motoneuron (SMN) axonal projections, abnormal dorsal root ganglion development and abnormal blood vessel development. Dissolved Zn (<10 kDa) exposure also caused abnormal SMN axonal projections, but to a lesser extent than ZnO-NPs. The ZnO-NPs-induced abnormal phenotypes were reversed in embryos concurrently exposed with various types of DOM. In these acute mitigation exposure experiments, humic acid and carbohydrate, along with natural organic matter obtained from the Suwannee River in Georgia and Milwaukee River in Wisconsin, were the best mitigators of ZnO-NPs-induced motoneuron toxicity at 96 h post fertilization. Further experiments were performed to determine if the ZnO-NPs-induced, abnormal axonal phenotypes and the DOM mitigated axonal phenotypes could persist across generations. Abnormal SMN axon phenotypes caused by ZnO-NPs-exposure were detected in F1 and F2 generations. These are fish that have not been directly exposed to ZnO-NPs. Fish mitigated with DOM during the acute exposure (F0 generation) had a reduction in abnormal motoneuron axon errors in larvae of subsequent generations. Therefore, ZnO-NPs exposure results in neurotoxicity in developing zebrafish which can persist from one generation to the next. Mitigation with DOM can reverse the abnormal phenotypes in an acute embryonic exposure context, as well as across generations, resulting in healthy fish.
显示更多 [+] 显示较少 [-]