细化搜索
结果 1-10 的 23
Antibiotics adaptation costs alter carbon sequestration strategies of microorganisms in karst river
2021
Xiang, Shizheng | Li, Yiqiang | Wang, Wanying | Zhang, Biao | Shi, Wenyu | Zhang, Jia | Huang, Fuyang | Liu, Fei | Guan, Xiangyu
Karst ecosystems make an important contribution to the global carbon cycle, in which carbon-fixing microorganisms play a vital role. However, the healthy functioning of karst ecosystems is threatened because pollutants easily diffuse and spread through them due to their strong hydraulic connectivity. The microbiome of a karst river contaminated with antibiotics was studied. Through co-occurrence network analysis, six ecological clusters (MOD 1–MOD 6) with different distribution characteristics were determined, of which four were significantly correlated with antibiotics. The carbon fixation pathways in different ecological clusters were varied, and the dominant hydroxypropionate-hydroxybutyrate cycle and reductive acetyl-CoA pathway were negatively and positively correlated with antibiotics, respectively. Long-term antibiotic contamination altered the selection of carbonic anhydrase (CA) encoding genes in some of the CA-producing mineralization microorganisms. The selection of different carbon fixation pathways is a possible strategy for the microbial community to compensate for the adaptation costs associated with the pressure of antibiotics contamination and emergence of antibiotics resistance. Bayesian network analysis revealed that some carbon sequestration functions (such as β-CA and reductive acetyl-CoA pathway) surpassed certain antibiotic resistance genes in the regulation of environmental factors and microbial networks. An ecological cluster (MOD5) that possibly homologous to antibiotic contamination was the final node of the microbial community in karst river, which indicated that ecological clusters were not only selected by antibiotics, but were also regulated by multiple environmental factors in the karst river system. The carbon sequestration pathway was more directly reflected in the abundance of ecological groups than in the influence of CA. This study provides new insights into the feedback effect of karst system on typical pollutants generated from human activities.
显示更多 [+] 显示较少 [-]Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis
2018
Capolupo, Marco | Franzellitti, Silvia | Valbonesi, Paola | Lanzas, Claudia Sanz | Fabbri, Elena
The widespread occurrence of microplastics (MP) in the marine environment is cause of increasing concerns about the safety of the exposed ecosystems. Although the effects associated to the MP uptake have been studied in most marine taxa, the knowledge about their sub-lethal impacts on early life stages of marine species is still limited. Here, we investigated the uptake/retention of 3-μm polystyrene MP by early stages of the Mediterranean mussel Mytilus galloprovincialis, and the related effects on gut clearance, feeding efficiency, morphological and transcriptional parameters involved in embryo-larval development. Uptake measurements were performed on larvae at 48 h, 3, 6 and 9 days post fertilization (pf) after exposure to a range of 50–10,000 particles mL−1. At all tested pf periods, treatments resulted in a significant and linear increase of MP uptake with increasing concentrations, though levels measured at 48 h pf were significantly lower compared to 3–9 d pf. Ingested MP were retained up to 192 h in larvae's gut, suggesting a physical impact on digestive functions. No change was noted between the consumption of microalgae Nannochloropsis oculata by larvae when administered alone or in the presence of an identical concentration (2000 items mL−1) of MP. The exposure to 50–10,000 MP mL−1 did not alter the morphological development of mussel embryos; however, transcriptional alterations were observed at 50 and 500 MP mL−1, including the up-regulation of genes involved in shell biogenesis (extrapallial protein; carbonic anhydrase; chitin synthase) and immunomodulation (myticin C; mytilin B), and the inhibition of those coding for lysosomal enzymes (hexosaminidase; β-glucorinidase; catepsin-L). In conclusion, though not highlighting morphological or feeding abnormalities, data from this study revealed the onset of physical and transcriptional impairments induced by MP in mussel larvae, indicating sub-lethal impacts which could increase their vulnerability toward further environmental stressors.
显示更多 [+] 显示较少 [-]Evaluation of the water quality of the upper reaches of the main Southern Brazil river (Iguaçu river) through in situ exposure of the native siluriform Rhamdia quelen in cages
2017
Souza-Bastos, Luciana R. | Bastos, Leonardo P. | Carneiro, Paulo Cesar F. | Guiloski, Izonete C. | Silva de Assis, Helena C. | Padial, André A. | Freire, Carolina A.
Increase in industrial growth, urban and agricultural pollution, with consequent impacts on aquatic ecosystems are a major focus of research worldwide. Still, not many studies assess the impacts of contamination through in situ studies, using native species, also considering the influence of seasonality on their responses. This study aimed to evaluate the water quality of the basin of the Upper Iguaçu River, the main source of water supply to Curitiba, a major capital of Southern Brazil, and its Metropolitan area. Several biomarkers were evaluated after in situ exposure of the native catfish Rhamdia quelen inside cages for 7 days. Ten study sites were chosen along the basin, based on a diffuse gradient of contamination, corresponding to regions upstream, downstream, and within “great Curitiba”. In each site, fish were exposed in Summer and Winter. The complex mixture of contaminants of this hydrographic basin generated mortality, and ion-, osmoregulatory and respiratory disturbances in the catfish as, for example, reduction of plasma osmolality and ionic concentrations, increased hematocrit levels and gill water content, altered branchial and renal activities of the enzyme carbonic anhydrase, as well as raised levels of plasma cortisol and glucose. Biomarkers were mostly altered in fish exposed in Great Curitiba and immediately downstream. There was a notable influence of season on the responses of the jundiá. A multivariate redundancy analysis revealed that the best environmental variables explained 30% of the variation in biomarkers after controlling for spatial autocorrelation. Thus, this approach and the chosen parameters can be satisfactorily used to evaluate contamination environments with complex mixtures of contaminants, in other urban basins as well.
显示更多 [+] 显示较少 [-]Evaluation of ketoprofen toxicity in two freshwater species: Effects on biochemical, physiological and population endpoints
2020
Alkimin, G.D. | Soares, A.M.V.M. | Barata, C. | Nunes, B.
Among the most used non-steroidal anti-inflammatory drugs (NSAIDs), ketoprofen (KTF) assumes an important position. Nevertheless, its ecotoxicological effects in non-target organisms are poorly characterized, despite its use and frequency of occurrence in aquatic matrices. Thus, the aim of this study was to evaluate the possible toxicological effects of KTF contamination, in two freshwater species, Lemna minor and Daphnia magna, by measuring biochemical, physiological and population parameters. To attain this objective, both species were exposed to KTF at the same concentrations (0, 0.24, 1.2, 6 and 30 μg/L). L. minor plants were exposed during 4 d to these levels of KTF, and the enzymatic activity (catalase (CAT), glutathione S-transferases (GSTs) and carbonic anhydrase (CA)), and pigments content (chlorophylls a, b and total and carotenoids) were analyzed to evaluate the toxicity of this drug. D. magna was acutely and chronically exposed to KTF, and enzymatic activities (CAT, GSTs and cyclooxygenase (COX)), the feeding rates, and reproduction traits were assessed. In L.minor, KTF provoked alterations in all enzyme activities, however, it was not capable of causing any alteration in any pigment levels. On the other hand, KTF also provoked alterations in all enzymatic activities in D. magna, but did not affect feeding rates and life-history parameters. In conclusion, exposure to KTF, provoked biochemical alterations in both species. However, these alterations were not reflected into deleterious effects on physiological and populational traits of L. minor and D. magna.
显示更多 [+] 显示较少 [-]Ocean acidification interacts with growth light to suppress CO2 acquisition efficiency and enhance mitochondrial respiration in a coastal diatom
2021
Qu, Liming | Campbell, Douglas A. | Gao, Kunshan
Diatom responses to ocean acidification have been documented with variable and controversial results. We grew the coastal diatom Thalassiosira weissflogii under 410 (LC, pH 8.13) vs 1000 μatm (HC, pH 7.83) pCO₂ and at different levels of light (80, 140, 220 μmol photons m⁻² s⁻¹), and found that light level alters physiological responses to OA. CO₂ concentrating mechanisms (CCMs) were down-regulated in the HC-grown cells across all the light levels, as reflected by lowered activity of the periplasmic carbonic anhydrase and decreased photosynthetic affinity for CO₂ or dissolved inorganic carbon. The specific growth rate was, however, enhanced significantly by 9.2% only at the limiting low light level. These results indicate that rather than CO₂ “fertilization”, the energy saved from down-regulation of CCMs promoted the growth rate of the diatom when light availability is low, in parallel with enhanced respiration under OA to cope with the acidic stress by providing extra energy.
显示更多 [+] 显示较少 [-]Shell form and enzymatic alterations in Lottia subrugosa (Gastropoda, Lotiidae) transplanted to a contaminated site
2021
Harayashiki, Cyntia Ayumi Yokota | Sadauskas-Henrique, Helen | de Souza-Bastos, Luciana Rodrigues | Gouveia, Nayara | Pont, Giorgi Dal | Ostrensky, Antonio | Castro, Italo Braga
Studies have shown that shell morphology and enzymatic activities in mollusks are affected by contaminants exposure. However, the correlation between enzymatic activities and the biomineralization process are not fully understood. The present study used a transplant bioassay and field sampling to evaluate shell measurements and the activities of carbonic anhydrase, Ca²⁺-ATPase, and Mg²⁺-ATPase in Lottia subrugosa sampled in Brazilian sites under different contamination levels. Results showed that, in general, shells from the reference site (Palmas) were more rounded than the ones from the contaminated site (Balsa). Effects in enzymatic activities in specimens from transplant bioassay were attributed to the known high contaminant levels present at Balsa. While the lack of enzymatic activity alterations during field sampling was attributed to physiological adaptation to contaminants exposure. Enzymatic activities were not correlated to shell biometric parameters in field sampling, indicating that these enzymes were not related to shell alterations detected in the present study.
显示更多 [+] 显示较少 [-]Lipid profiling differentiates the effect of ambient microenriched copper on a coral as an advanced tool for biomonitoring
2022
Tang, Chuan-Ho | Shi, Shu-Han | Lin, Jingyu | Wang, Wei-Hsien
Copper can be beneficial or harmful to coral at environmentally relevant levels, making environmental monitoring a challenging. Membrane lipids make the cell a dynamic environment according to the circumstances; thus, the lipid profile should be indicative of an environmental/physiological state. To gain more insight into the copper effect on coral health and be a basis of biomonitoring, glycerophosphocholine profiling of coral exposed to microenriched copper levels was conducted in this study. The copper microenrichments resulted in a diacritical effect of decreasing carbonic anhydrase activity, following a supplementation effect, on coral lipid metabolism. Microdifferences in copper levels are critical to determine the coral metabolic state and were therefore included in this study. In addition, an excellent quantitative model correlating the coral lipid variation with the exposed copper levels or the induced physiological effect was obtained to demonstrate its performance for biomonitoring.
显示更多 [+] 显示较少 [-]Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions
2020
Chaves Lopes, Fernanda | Rosa de Castro, Micheli | Caldas Barbosa, Sergiane | Primel, Ednei Gilberto | de Martinez Gaspar Martins, Camila
This work aimed to investigate effects of the ocean contamination by the sunscreen Benzophenone-3 (BP3) and acidification, caused by CO₂ enrichment, to the yellow clam, Amarilladesma mactroides. Biochemical biomarkers were analyzed in tissues (gills, digestive gland, and mantle) of clams exposed to the environmental concentration of 1 μg/L BP3, at seawater natural pH (pH 8.1) and at lower pH (pH 7.6). The tissues responded in different ways considering their physiological roles. In general, BP3 altered activity of the enzymes, glutathione-S-transferase (GST) and glutathione cysteine ligase (GCL); but mostly increased the level of glutathione (GSH). These effects were enhanced by acidification, without augmenting lipid peroxidation (LPO). Carbonic anhydrase activity (CA) increased after BP3 exposure in the digestive gland and decreased in the gills at pH 7.6, while Ca²⁺-ATPase activity was affected by acidification only. Changing levels of these enzymes can alter shell formation and affect the bivalve maintenance in impacted environments.
显示更多 [+] 显示较少 [-]Interactive effect of nitrogen source and high CO2 concentration on the growth of the dinoflagellate Alexandrium tamarense and its toxicity to zebrafish (Danio rerio) embryos
2018
Guan, Wanchun | Si, Ranran | Li, Xi | Cai, Jingbo | Chen, Shaobo
The effects and interactive effects of different nitrogen (N) sources (ammonium, nitrate, and urea) and carbon dioxide (CO₂) concentrations were investigated on Alexandrium tamarense, a harmful marine dinoflagellate, by measuring its growth (μ), extracellular carbonic anhydrase (CA), and its toxicity to zebrafish (Danio rerio) embryo. The μ and CA were influenced more strongly by CO₂ concentrations rather than by N sources; significant effects of CO₂ on μ and CA were observed under low CO₂ concentration (LC) conditions compared to high CO₂ concentration (HC) conditions. The ammonium and nitrate media under LC conditions had the maximum μ and CA, which was inhibited under HC conditions. The embryotoxic effects were influenced more strongly by the N sources than by CO₂ concentrations, thus excluding the lower deformation in urea under HC conditions. Moreover, the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST), and catalase (CAT) were detected in normal (untreated) zebrafish embryos, and among them, the level of SOD was the highest. In summary, this study provides a clear insight for understanding the effects and interactive effects of N sources and CO₂ concentrations on the growth and toxicity of harmful dinoflagellates.
显示更多 [+] 显示较少 [-]Effects of low seawater pH on the marine polychaete Platynereis dumerilii
2015
Wäge, Janine | Hardege, Jorg D. | Larsson, Tomas A. | Simakov, Oleg | Chapman, Emma C. | Arendt, Detlev | Rotchell, Jeanette M.
An important priority for any organism is to maintain internal cellular homeostasis including acid–base balance. Yet, the molecular level impacts of changing environmental conditions, such as low pH, remain uncharacterised. Herein, we isolate partial Na+/H+exchangers (NHE), carbonic anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and investigate their relative expression in acidified seawater conditions. mRNA expression of NHE was significantly down-regulated after 1h and up-regulated after 7days under low pH treatment (pH 7.8), indicating changes in acid–base transport. Furthermore, the localisation of NHE expression was also altered. A trend of down regulation in CA after 1h was also observed, suggesting a shift in the CO2 and HCO3− balance. No change in CaM expression was detected after 7days exposure to acidified seawater. This study provides insight into the molecular level changes taking place following exposure to acidified seawater in a non-calcifying, ubiquitous, organism.
显示更多 [+] 显示较少 [-]