细化搜索
结果 1-7 的 7
Adsorption and fractionation of Pt, Pd and Rh onto inorganic microparticles and the effects of macromolecular organic compounds in seawater
2019
Adsorption and fractionation of Pt, Pd and Rh (defined here as platinum group elements, PGEs) onto the representative inorganic microparticles, including Fe2O3, MnO2, CaCO3, SiO2, Al2O3 and kaolinite in seawater were investigated. The effects of macromolecular organic compounds (MOCs) as the representatives of organic matter, including humic acids (HA), bovine serum albumin (BSA) and carrageenan, on the adsorption were also studied considering that organic matter is ubiquitous in seawater and indispensable to marine biogeochemical cycles. In the absence of MOCs, the representative mineral particles Fe2O3 and MnO2 had the strongest interaction with PGEs. The adsorption of PGEs onto the representative biogenic particles SiO2 and CaCO3 and lithogenic particles Al2O3 and kaolinite was similar or weaker than onto the mineral particles. MOCs inhibited the interaction between PGEs and the particles except for Pt and Pd onto the biogenic particles in artificial seawater. This impediment may be closely related to the interaction between particles, MOCs and elements. The partition coefficient (log Kd) of Pt was similar (∼4.0) in the presence of MOCs, indicating that the complexation between Pt and MOCs was less important than hydrolysis or adsorption onto the acid oxide particle surface. Rh tended to fractionate onto the mineral and lithogenic particles in the presence of HA and carrageenan, while Pd was more likely to fractionate onto the biogenic particles. However, BSA enhanced the fractionation tendency of Pd onto the mineral particles. The results indicate that the adsorption behavior of Pd onto inorganic particles was significantly affected by the composition or the type of MOCs. Hence, the interaction between PGEs and inorganic particles may be greatly affected by the macromolecular organic matter in the ocean.
显示更多 [+] 显示较少 [-]A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production
2021
Ahmed, Naveed | Dhar, Bipro Ranjan | Pramanik, Biplob Kumar | Forehead, Hugh | Price, William E. | Hai, Faisal I.
PURPOSE OF REVIEW: The depletion of fossil reserves and environmental challenges associated with fossil fuels are major drivers of the search for sustainable renewable energy sources. Bioethanol production from macroalgae is one of the promising alternatives to reduce use of fossil fuels and achieve energy security and ecological sustainability. The purpose of this review is to critically discuss the options to optimize the process parameters for steady production of bioethanol from macroalgae. RECENT FINDINGS: A comprehensive literature review reveals that bioethanol production from macroalgae not only depends on the macroalgae type but also on the selection of pretreatment, hydrolysis, and fermentation options. Unlike the first- and second-generation feedstocks, macroalgae contains low concentrations of glucans. Thus high bioethanol concentration cannot be achieved by converting only glucans. Therefore, it is important to produce bioethanol from other carbohydrate components of macroalgae, such as alginate, sulphated polysaccharides, carrageenan, mannitol, and agar. The selection of the right hydrolysing agents (e.g., enzyme and/or acid) and steps to minimize formation of inhibitors during the process were found to be important factors affecting the efficiency of hydrolysis process. The hydrolysis enzymes currently used were developed for lignocellulosic and starch-based biomass, not for macroalgae, which is different in polysaccharide structure and composition. Also, the lack of appropriate fermenting microorganisms capable of converting heterogeneous monomeric sugars in macroalgae is a major factor limiting bioethanol yield during the fermentation process. This review systematically discusses the implications of selecting different macroalgae types. The optimization of process parameters of different bioethanol production steps such as pretreatments, hydrolysis, and fermentation is discussed. It can be concluded that high bioethanol yield can be achieved by considering macroalgae type and composition, selecting appropriate pretreatment, hydrolysis, and fermenting microbes, and with effective bioethanol purification.
显示更多 [+] 显示较少 [-]From the ocean to jellies forth and back? Microplastics along the commercial life cycle of red algae
2021
Menéndez, Daniel | Alvarez, Almudena | Peon, Paloma | Ardura, Alba | García Vázquez, Eva
Red algae are increasingly exploited for direct consumption and for production of gelling agents like agar and carrageenan, widely employed in food and personal care products. In this article we identify knowledge gaps about microplastics in the whole commercial life cycle of gelling red algae, from their marine production to the final wastewater treatment. Recommendations for new research include studies of microplastics deposition on red algae at sea, during the industrial process of production of gelling agents, and indeed about improvements of microplastics retention in wastewater treatment plants.
显示更多 [+] 显示较少 [-]Protocatechuic acid counteracts oxidative stress and inflammation in carrageenan-induced paw edema in mice
2022
Albarakati, Alaa Jameel A.
Protocatechuic acid (PCA), a phenolic compound found in teas, fruits, and vegetables, is widely recognized with its antioxidant and anti-inflammatory activities. Here, we verified the protective role of PCA on carrageenan (CGN)-induced paw edema in mice. Forty-five male Swiss albino mice were assigned into five groups: control group, CGN-injected group (1% w/v), PCA (25 mg/kg) + CGN group. PCA (50 mg/kg) + CGN group and diclofenac sodium (20 mg/kg) + CGN group. PCA and diclofenac sodium were administered orally for 5 consecutive days prior to the CGN injection. PCA pretreatment notably decreased the volume of the developed edema and alleviated the histopathological alterations induced by carrageenan. Additionally, PCA administration enhanced the cellular antioxidant capacity as demonstrated by the increased levels of catalase, superoxide dismutase, and reduced glutathione, in addition to the decreased malondialdehyde level in the edematous tissue. Interestingly, PCA administration was able significantly to suppress the developed inflammatory response upon carrageenan injection as indicated by the decreased levels and expression of pro-inflammatory cytokines and mediators including tumor necrosis factor alpha, interleukin-1 beta, interleukin-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-II, prostaglandin E2, monocyte chemoattractant protein-1, myeloperoxidase and nuclear factor kappa B. These results collectively confirm the protective effect of PCA against carrageenan-induced paw edema owing to its antioxidant and anti-inflammatory characteristics.
显示更多 [+] 显示较少 [-]Carrageenan oligomers and salicylic acid act in tandem to escalate artemisinin production by suppressing arsenic uptake and oxidative stress in Artemisia annua (sweet wormwood) cultivated in high arsenic soil
2021
Naeem, Muhammad | Aftab, Tariq | Ansari, Abid A. | Khan, Mohammad Masroor Akhtar
The present study is aimed to elucidate the effects of concomitant application of irradiated carrageenan (IC) oligomers and salicylic acid (SA) on Artemisia annua L. varieties, viz. “CIM-Arogya” (tolerant) and “Jeevan Raksha” (sensitive) exposed to arsenic (As) stress. Artemisia annua has been known for its sesqui-terpene molecule artemisinin, which is useful in curing malaria. The two compounds, IC and SA, have been established as effective plant growth-promoting molecules for several agricultural and horticultural crops. To test the stress tolerance providing efficacy of IC and SA, the characterization of various physiological and biochemical parameters, growth as well as yield attributes was done in the present experiment. A. annua plants were given various treatments viz. (i) Control (0) (ii) 45 mg As kg⁻¹ of soil (iii) 80 mg L⁻¹ IC+45 mg As kg⁻¹ of soil (iv) 10⁻⁶ M SA+45 mg As kg⁻¹ of soil (vi) 45 mg As kg⁻¹ soil+80 mg L⁻¹ IC+10⁻⁶ M SA. Plants of A. annua suffered from prominent injuries due to oxidative stress generated by As. At 90 and 120 days after planting (DAP), As toxicity was manifested in reduction of most of the studied growth parameters. However, antioxidant activities such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were enhanced in As-stressed conditions and their activities were further enhanced in IC+SA-treated plants. Application of As significantly produced the highest artemisinin content and yield in “CIM-Arogya” over “Jeevan Raksha.” Noticeably, the selected plant growth regulators (PGRs) (IC and SA) applied individually through foliage were found efficient, though, the concomitant effect of PGRs was much pronounced compared to their alone application in countering the toxicity of As. The interactive action of PGRs escalated the overall production (yield) of artemisinin (58.7% and 53.8%) in tolerant and sensitive varieties of A. annua in the presence of soil As. Conclusively, the concomitant application of IC and SA proved much effective and successful over their individual use in exploring the overall development of A. annua subjected to As stress.
显示更多 [+] 显示较少 [-]Pro-inflammatory or anti-inflammatory effects of pulsed magnetic field treatments in rats with experimental acute inflammation
2020
Mert, Tufan | Yaman, Selma
In this study, we evaluated the possible effects of sequenced pulsed magnetic fields (PMF) of 1-mT treatments with designed different frequencies (PMF-1—1, 3, 5, 7 Hz or PMF-2—7, 9, 12, 14 Hz) on the inflammatory signs such as abnormal pain behaviors, hyperalgesia and allodynia, edema, and fever in carrageenan (CG)-induced hind paw inflammation model in rats. Paw tissues were also histologically examined. PMF exposure was applied 3 times in 24 h. CG injection gradually decreased the thermal latencies and mechanical threshold and caused significant increases in temperature and mass of paw. PMF treatments significantly reduced the temperature and mass in the paw of rats with inflammation. PMF-1 treatments caused significant increases in the latencies and thresholds. However, administration of PMF-2 treatment was significantly decreased the latency and threshold. Furthermore, the histological pieces of evidence also suggested the anti-inflammatory effects of PMF-1 treatments or inflammatory actions of PMF-2 treatments. Findings presented in this paper suggest that 1-mT PMF treatments may have anti-edematous and antipyretics activities in inflamed rats. However, the effects of PMF treatments on abnormal pain hypersensitivities may be different. PMF treatments may make inflammatory pain relief or worse in inflamed rats depending on the PMF frequencies in sequence.
显示更多 [+] 显示较少 [-]Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres: preparation and microcosm study
2019
Ji, Changling | Meng, Liang | Wang, Hualin
In this study, a composite remediation material for the enhanced reductive dechlorination (ERD) of 1,1,1-trichloroethane (1,1,1-TCA) in aqueous solution was prepared. This material was comprised of biochar as the carrier and adsorbent, and carrageenan (CG) as the embedding medium to entrap the organic carbon sources and zero-valent iron (ZVI). We determined the suitable biochar dosage and organic carbon source in the composite alongside the optimal preparation conditions. Furthermore, using an anaerobic microcosm study, we discussed the performance and possible mechanisms of the composite on 1,1,1-TCA removal in aqueous solution. From this, we found that the suitable dosage of biochar in water during the preparation of composite microspheres was 0.2% (w/v). Under this condition, the biochar had a strong capacity to adsorb 1,1,1-TCA with a removal efficiency of 84.2%. Soluble starch was selected as the appropriate organic carbon source, because starch-microspheres show an excellent slow-release effect in water. The optimal preparation conditions of microspheres were identified as follows: 2% CG (w/v) colloidal solution, 6% CaCl₂ (w/v) solution, and a 12-h curing time. After 25-day incubation with the composite prepared under optimized conditions, the removal efficiency of 1,1,1-TCA was 95.68%, which was 24.69% higher than that observed in the microcosm with a commercial remediation material. The scanning electron microscopy (SEM) images show that the amounts of ZVI and soluble starch inside the microsphere decreased obviously, while the biochar amount remained about the same. This indicates that 1,1,1-TCA in aqueous solution was mainly removed via soluble starch-enhanced biotic reductive dechlorination and ZVI-enhanced abiotic reductive dechlorination. The changes in microbial community structure demonstrate that the composite stimulated the activities of functional anaerobic bacteria, in particular, regarding dechlorination and fermentation abilities in the microcosm, therefore enhancing the anaerobic biodegradation of 1,1,1-TCA. This study suggests that the composite, entrapping biochar, ZVI, and organic carbon source in CG microspheres can significantly enhance the reductive dechlorination of 1,1,1-TCA in aqueous solution. We anticipate this novel remediation material could be successfully applied to the in situ ERD remediation of natural groundwater mainly contaminated with 1,1,1-TCA.
显示更多 [+] 显示较少 [-]