细化搜索
结果 1-10 的 80
Chromosomal and Nuclear Alteration Induced by Nickel Nitrate in the Root Tips of Allium cepa var. aggregatum
2023
Pharmawati, Made | Wrasiati, Luh Putu
Nickel nitrate is a heavy metal known as an environmental contaminant due to its toxicity, long environmental half-lives, and capacity for bioaccumulation. This study aims to determine chromosomal aberration, nuclear alteration, and cell death in Allium cepa var. aggregatum L. root caused by different nickel concentrations. Roots of Allium cepa var. aggregatum were induced by soaking bulbs in water, then transferred to a solution containing nickel (Ni) at a concentration of 20 ppm, 30 ppm, and 40 ppm for 72 hours. Root tip mitotic chromosome preparations were done by the squash method. The chromosome was stained with aceto-orcein and chromosomal damages were observed under a microscope. The results showed that the mitotic index decreased from 5.025% at control to 3.144%, 2.467%, and 2.181% at immersion with 20 ppm, 30 ppm 40 ppm nickel nitrate, respectively. Anaphase and telophase indexes in roots with Ni treatments were lower than in control, suggesting that nickel inhibits cell division. Nickel nitrate induced chromosomal damages and nuclear abnormalities, such as sticky chromosome, fragmented chromosome, chromosome bridge and chromosome laggard, micronuclei, binucleate and nuclear budding. The percentage of chromosomal damage increases with a higher concentration of Ni. In situ cell visualization showed that the higher the nickel concentration, the more coloured the root tips indicating high levels of cell death.
显示更多 [+] 显示较少 [-]Genotoxic Effect, Oxidative Stress and Cell Death due to Metronidazole Application in Gills and Liver Tissues of Rainbow Trout (Oncorhynchus mykiss)
2022
Gürcü, Beyhan | Koca, Serdar | Başimoğlu Koca, Yucel | Çöllü, Fatih | Tuğlu, Mehmet
In this study, the purpose was to investigate the histopathological, genotoxic effect, oxidative stress and cell death due to Metronidazole (MTZ), which is a 5-nitroimidazole compound used widely for the treatment of anaerobic organism infections in fish and humans on gill and liver tissues of Oncorhynchus mykiss.Trout fishes were exposed to 5, 10, and 20 mg/L of MTZ in the aquariums for 2, 4 and 8 days. Staining technics namely H&E, NOS immunohistochemistry, and TUNEL were performed to determine histopathological changes, oxidative damage and apoptosis. Additionally, smear preparations were also prepared from gill blood for genotoxic evaluations. The organ damage started in the 2nd day with 5 mg/L MTZ application and effects increased per duration and dose-dependent manner. It was observed that the gills had the primary and secondary lamellae lengths, with formation of clavate lamellae, fusion in secondary lamellae, separation of epithelium and aneurysm. Regional necrosis, vacuolization of hepatocytes, pycnotic nucleus, enlarged sinusoids were also determined in the liver. NOS immunoreactivity increased with the inducible immunoreactivity (iNOS) that was more prominent when compared to the endothelial immunoreactivity (eNOS). Apoptotic immunoreactivity was higher in the 10 mg 8th day experimental group at liver and gills, and was lower 20 mg 8th day experimental group. When the gills and liver compared with each other, in all doses, immunoreactivity was lower in gills, compared with liver. Genotoxic examinations showed that both number of micronucleated erythrocytes and nuclei abnormalities were higher in MTZ-treated groups.
显示更多 [+] 显示较少 [-]Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood
2020
Tadei, Rafaela | Menezes-Oliveira, Vanessa B. | Silva-Zacarin, Elaine C.M.
The frequent exposure of bees to a wide variety of fungicides, on crops where they forage, can be considered a stressor factor for these pollinators. The organisms are exposed both to the fungicide active ingredients and to the adjuvants of commercial formulations. All these ingredients are brought to the hive by bee foragers through contaminated pollen and nectar, thus exposing also immature individuals during larval phase. This work aimed to compare the effects of larval exposure to the fungicide pyraclostrobin (active ingredient and commercial formulation) and its influence on the cytotoxicity to midguts in adults, which were inoculated with the Nosema ceranae spores in the post-emergence stage. Under laboratory conditions, Apis mellifera larvae received an artificial diet containing fungicide solution from the third to the sixth day of the feeding phase. One-day-old adult workers ingested 100,000 infectious N. ceranae spores mixed in sucrose solution. Effects on midgut were evaluated through cellular biomarkers of stress and cell death. The exposure to the fungicide (active ingredient and commercial formulation) did not affect the larval post-embryonic development and survival of adult bees. However, this exposure induced cytotoxicity in the cells of the midgut, showed by the increase in DNA fragmentation and alteration in the HSP70 immunolabeling pattern. Without the pathogen, the midgut cytotoxic effects and HSP70 immunolabeling of the organisms exposed to the commercial formulation were lower when compared to the exposure to its active ingredient. However, in the presence of the pathogen, the cytotoxic effects of the commercial formulation to the adult bees’ midgut were potentialized. The pathogen N. ceranae increased the damage to the intestinal epithelium of adult bees. Thus, realistic doses of pyraclostrobin present in beebread consumed by larvae can affect the health and induce physiological implications to the midgut functions of the adult bees.
显示更多 [+] 显示较少 [-]Neodymium-containing contrast induces mummification of neutrophil granulocytes
2020
Pleskova, Svetlana | Kryukov, Ruslan | Boryakov, Alexey | Gorshkova, Ekaterina
Recently, chemical compounds containing lanthanides were used in various fields of biology and medicine. It has been described that such compounds can be applied in scanning electron microscopy (SEM) to increase the contrast and simplify the sample preparation process due to the process of replacing calcium with lanthanides in cell. However cell death by different mechanisms under influence of lanthanides seems possible. Here, we described that mummification process is a cell death physiologically realized in time: some time after lanthanide contrasting, the cell remains metabolically active and is able to biochemically transform neodymium-containing contrast, oxidize it and form large agglomerates. A distinctive feature of mummification induced by neodymium-containing contrast (NCC) is the formation of a high-rigid oxygen-containing “shield” on the surface of a neutrophil granulocyte.
显示更多 [+] 显示较少 [-]Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress
2020
Zhang, Cong | Ge, Jing | Lv, Meiwei | Zhang, Qi | Talukder, Milton | Li, Jin-Long
Cadmium (Cd), a heavy metal contaminant, exists in humans and animals throughout life and closely associate with severe hepatotoxicity. Selenium (Se) has been recognized as an effective chemo-protectant of Cd, but the underlying mechanisms remain unclear. The objective of the present study is to illustrate the antagonistic effect of Se against Cd-induced hepatotoxicity. Primary hepatocytes were cultured in the presence of 5 μM Cd, 1 μM Se and the mixture of 1 μM Se and 5 μM Cd for 24 h. Cell viability and morphology, antioxidant status, endoplasmic reticulum (ER) stress response and selenotranscriptome were assessed. It was observed that Se treatment dramatically alleviated Cd-induced hepatocytes death and morphological change. Simultaneously, Se mitigated Cd-induced oxidative stress by reducing ROS production, increasing reduced glutathione (GSH) level and increasing selenoenzyme (glutathione peroxidase, GPX) activity. Cd induced hepatotoxicity via disordering ER-resident selenoproteins transcription and triggering ER stress and unfolded protein response. Supplementary Se evidently relieved hepatocytes injury via modulating ER-resident selenoproteins transcription to inhibit ER stress. Collectively, our findings showed a potential protection of Se against Cd-induced hepatotoxicity via suppressing ER stress response.
显示更多 [+] 显示较少 [-]PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance
2019
Wang, Yan | Tang, Meng
PM2.5 is becoming a worldwide environmental problem, which profoundly endangers public health, thus progressively capturing public attention this decade. As a fragile target of PM2.5, the underlying mechanisms of endothelial cell damage are still obscure. According to the previous microarray data and signaling pathway analysis, a new form of cell death termed ferroptosis in the current study is proposed following PM2.5 exposure. In order to verify the vital role of ferroptosis in PM2.5-induced endothelial lesion and further understand the potential mechanism involved, intracellular iron content, ROS release and lipid peroxidation, as well as biomarkers of ferroptosis were detected, respectively. As a result, uptake of particles increases cellular iron content and ROS production. Meanwhile, GSH depletion, and the decrease of GSH-Px and NADPH play significant roles in PM2.5-induced endothelial cell ferroptosis. Moreover, significantly changed expression of TFRC, FTL and FTH1 hinted that dysfunction of iron uptake and storage is a major inducer of ferroptosis. Importantly, index monitored above can be partially rescued by lipid peroxidation inhibitor ferrostatin-1 and iron chelator deferoxamine mesylate, which mediated antiferroptosis activity mainly depends on the restoration of antioxidant activity and iron metabolism. In conclusion, our data basically show that PM2.5 enhances ferroptosis sensitivity with increased ferroptotic events in endothelial cells, in which iron overload, lipid peroxidation and redox imbalance act pivotal roles.
显示更多 [+] 显示较少 [-]Diurnal trends in redox characteristics of water-soluble and -insoluble PM components
2019
Gali, Nirmal Kumar | Li, Guoliang | Ning, Zhi | Brimblecombe, Peter
Densely populated cities with a compact urban built environment have concerns over health risks derived from high levels of airborne particulate matter (PM) exposure. Understanding the association between PM and reactive oxygen species (ROS) is an important step towards unravelling the mechanisms behind. This study investigated the role of time-integrated PM sampling on cellular toxicity mechanism on a diurnal scale. The sampling took place in a highly urbanized part of Hong Kong at two contrast roadside and background sites, with simultaneous solid-PM and semi-volatile-PM (SV-PM) collection in both summer and winter seasons. A sampling day consisted three sampling intervals of 6 h each – 04:00–10:00, 12:00–18:00 and 20:00–02:00 h, representing morning rush hours, afternoon and night periods, respectively. Water and organic extracts of PM were prepared, with and without filtration, and exposed to RAW264.7 and A549 cell lines on a dose and time-dependent manner. Solid-PM and SV-PM contribution to total PM₂.₅ mass concentration was 9:1, with much higher SV-PM fraction at roadside over urban background (p < 0.001, n = 36). Also, the SV-PM mass concentration increased by 10–20% during 20:00–02:00 h compared to morning and afternoon sampling periods. Organic PM extract was observed to cause 23–29% higher cell death compared to water-soluble PM, which is complemented with increased ROS production in both cell lines. The cellular damage caused by oxidative stress, determined from increased HO-1 and TNF-α expression in RAW264.7 was higher compared to the A549, which demonstrated the greater induction of toxicity from organic PM extract over soluble PM. Similarly, the SV-PM induced greater than 2-fold cellular ROS generation on PM mass basis compared to solid-PM. Lack of phagocytic action in A549 compared to RAW264.7 suggested novel toxicity routes for water-soluble and organic PM that can be expected to occur during human PM inhalation-bronchi-alveolar exposure.
显示更多 [+] 显示较少 [-]Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids
2016
Yang, Lin | Kuang, Huijuan | Liu, Yingxia | Xu, Hengyi | Aguilar, Zoraida P. | Xiong, Yonghua | Wei, Hua
Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn2+ which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn2+ played a major role in the microbial toxicity of ultra-fine-ZnO.
显示更多 [+] 显示较少 [-]Plant cell death and cellular alterations induced by ozone: Key studies in Mediterranean conditions
2009
Faoro, Franco | Iriti, Marcello
An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O3 were recorded in crop and forest species. In contrast, visible O3 effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O3 injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O3 symptoms at the microscopic level and for a pre-visual diagnosis of O3 injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O3 sensitivity or tolerance. Ozone-induced cell death is a frequent phenomenon in Mediterranean conditions, not only in the most sensitive crops but also in forest species.
显示更多 [+] 显示较少 [-]Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions
2021
Scharf, Pablo | da Rocha, Gustavo H.O. | Sandri, Silvana | Heluany, Cintia S. | Pedreira Filho, Walter R. | Farsky, Sandra H.P.
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
显示更多 [+] 显示较少 [-]