细化搜索
结果 1-10 的 15
Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development
2022
Zhao, Miaomiao | Yin, Nuoya | Yang, Renjun | Li, Shichang | Zhang, Shuxian | Faiola, Francesco
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs’ potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
显示更多 [+] 显示较少 [-]Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size
2019
Pierron, Fabien | Daffe, Guillemine | Lambert, Patrick | Couture, Patrice | Baudrimont, Magalie
Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants.
显示更多 [+] 显示较少 [-]Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus)
2018
Yan, Saihong | Wang, Miao | Liang, Xue-fang | Martyniuk, Christopher J. | Zha, Jinmiao | Wang, Zijian
To assess hepatotoxicity and to determine the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, histopathology and the liver proteome were examined after Chinese rare minnow (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 days. Histopathological changes included disruption of spatial structure, pyknotic nuclei, cellular vacuolization and deformation of cell nuclei, in addition to marked swelling of hepatocytes in all treatment groups. Protein analysis revealed that there were gender-specific responses in rare minnow following exposure, and there were 47 proteins in females and 22 proteins in males identified as differentially abundant following CBZ treatments. Pathway analysis revealed that cellular processes affected by CBZ included apoptosis, cell differentiation, cell proliferation, and the respiratory chain, indicating impaired energy homeostasis. Noteworthy was that 15 proteins identified as different in abundance were associated with carcinogenicity. Relative mRNA levels for select transcripts were consistent with the changes of proteins N-myc downstream regulated gene (NDRG), Tropomyosin 2-Beta (TPM2) and annexin A4 (ANXA4). Protein pyruvate kinase, liver and RBC (PKLR) were increased at 1 and 100 μg/L CBZ without significant difference in transcript levels. These findings characterize molecular responses and histological changes in the liver that generate new insights into CBZ hepatotoxicity in Chinese rare minnow.
显示更多 [+] 显示较少 [-]Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development
2020
Zhu, Min | Li, Yuanyuan | Niu, Yue | Li, Jinbo | Qin, Zhanfen
We previously found bisphenol A (BPA) alternative, bisphenol F (BPF) upregulated Notch-related gene expression in intestines of the African clawed frog Xenopus laevis, suggesting an agonistic action on Notch signaling, a crucial signaling in multiple biological processes during development. Here, we aimed to confirm the actions of BPA and BPF on Notch signaling and to reveal their effects on intestinal development. Using X. laevis, an excellent model for developmental biology, we found that 10–1000 nM BPA and BPF significantly elevated Notch-related gene expression in a concentration-dependent manner. Subsequently, exceptional cell proliferation as well as intestinal histological changes were observed in treated intestines. Importantly, Notch inhibitor markedly suppressed the effects of BPA and BPF described above. Furthermore, we employed rat intestinal epithelium cells (IEC-6), an ideal in vitro model of intestinal epithelial cell differentiation, to confirm the effects of bisphenols. As expected, BPA and BPF upregulated Notch-related gene expression and induced the translocation of the Notch intracellular domain to the nucleus, followed by exceptional cell proliferation and differentiation, whereas Notch inhibitor antagonized the effects caused by BPA and BPF. All results strongly demonstrate that both BPA and BPF activate Notch signaling and subsequently disrupt intestinal development in vertebrates. Given its fundamental roles in multiple developmental processes, we propose that Notch signaling is an important and general target signaling of bisphenols in many developing tissues of vertebrates including humans.
显示更多 [+] 显示较少 [-]Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120
2017
Xue, Xi-Mei | Yan, Yu | Xiong, Chan | Raber, Georg | Francesconi, Kevin | Pan, Ting | Ye, Jun | Zhu, Yong-Guan
Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%–38% and 29%–57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic.
显示更多 [+] 显示较少 [-]Effects of bisphenol A exposure during cardiac cell differentiation
2021
Escarda-Castro, Enrique | Herráez, María Paz | Lombó, Marta
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
显示更多 [+] 显示较少 [-]Zearalenone and deoxynivalenol reduced Th1-mediated cellular immune response after Listeria monocytogenes infection by inhibiting CD4+ T cell activation and differentiation
2021
Cai, Guodong | Xia, Sugan | Zhong, Fang | Liu, Shuangshuang | Gu, Jianhong | Yuan, Yan | Zhu, Guoqiang | Zou, Hui | Liu, Zongping | Bian, Jianchun
Based on the fact that mycotoxins and the food-borne bacteria coexist in the natural environment and pose a significant health hazard to humans and animals, it is important to investigate the immunosuppressive mechanism of ZEA (zearalenone), DON (deoxynivalenol), and their combination in bacterial infections. In this study, we established a mouse model of mycotoxin low-dose exposure combined with Listeria monocytogenes infection and investigated the effects of ZEA, DON and their combination on Th1-mediated anti-intracellular bacterial infection based on CD4⁺ T cell activation and differentiation using both in vitro and in vivo analyses. The present study showed that both ZEA and DON aggravated Listeria monocytogenes infection in mice and affected the activation of CD4⁺ T cells and Th1 differentiation, including the effects on costimulatory molecules CD28 and CD152 and on cross-linking of IL-12 and IL-12R, by inhibiting T cell receptor (TCR) signaling. When compared with ZEA, DON was found to have a greater impact on many related indicators. Surprisingly, the combined effects of ZEA and DON did not appear to enhance toxicity compared to treatment with the individual mycotoxins. Our findings more clearly revealed that exposure to low-dose ZEA and DON caused immunosuppression in the body by mechanisms including inhibition of CD4⁺ T cells activation and reduction of Th1 cell differentiation, thus exacerbating infection of animals by Listeria monocytogenes.
显示更多 [+] 显示较少 [-]In utero exposure to bisphenol A disrupts fetal testis development in rats
2019
Lv, Yao | Li, Lili | Fang, Yinghui | Chen, Panpan | Wu, Siwen | Chen, Xiuxiu | Ni, Chaobo | Zhu, Qiqi | Huang, Tongliang | Lian, Qingquan | Ge, Ren-Shan
Bisphenol A (BPA) is widely used in consumer products and is a potential endocrine disruptor linked with abnormal development of male reproductive tract. However, its action and its effects on the pathways in the development of male gonad are still unclear. Here we report that effects of BPA exposure during gestation on male gonad development. Sprague-Dawley rats were gavaged daily with BPA (0, 4, 40, and 400 mg/kg body weight) from gestational day 12 to day 21. BPA dose-dependently decreased serum testosterone levels (0.45 ± 0.08 ng/ml and 0.32 ± 0.08 ng/ml for 40 and 400 mg/kg BPA, respectively) versus the control level (1.11 ± 0.22 ng/ml, Mean ± SE). BPA lowered Leydig cell Insl3 and Hsd17b3 mRNA and their protein levels at doses of 40 and 400 mg/kg. BPA also lowered Leydig cell (Lhcgr, Cyp11a1, and Cyp17a1) and Sertoli cell (Amh) mRNA and their protein levels at 400 mg/kg. BPA decreased fetal Leydig cell number via inhibiting their proliferation, but it did not affect fetal Sertoli cell number. In conclusion, the current study shows that in utero exposure to BPA inhibits fetal Leydig and Sertoli cell differentiation, possibly disrupting the development of male reproductive tract.
显示更多 [+] 显示较少 [-]In Vitro Studies on Atrazine Effects on Human Intestinal Cells
2010
Olejnik, Anna M. | Marecik, Roman | Białas, Wojciech | Cyplik, Paweł | Grajek, Włodzimierz
Considering the importance of the oral route for human exposure to atrazine, we have investigated the possible effect of this herbicide on the human intestinal cells and the integrity of the epithelial barrier, using Caco-2 cells as the intestinal model in vitro. We evaluated possibile cytotoxic and genotoxic effects of atrazine in concentrations ranging from 1 to 250 μM on the Caco-2 cells at different stages of growth after short- and long-term exposure. Results from the tetrazolium blue (MTT) test and the Trypan blue exclusion assay showed that atrazine cytotoxicity was dose- and time-dependent. Obtained data indicated that atrazine at high concentrations (50 and 250 μM) was able to induce effects on Caco-2 proliferation and viability. Moreover, it was found that the long-term exposure to atrazine at the non-cytotoxic dose caused inhibition of the intestinal cell maturation and decreased the transepithelial electrical resistance, the indicator of the epithelial barrier integrity. Studies on the atrazine genotoxicity determined using the single cell microelectrophoresis assay indicated that atrazine did not induce DNA damages in the Caco-2 cells at concentrations of up to 50 μM, whereas enhancement in the DNA damage was observed at 250 μM. Altogether, our results indicate that atrazine at expected human oral exposure concentrations is not able to induce effects on the Caco-2 cell proliferation and viability, but may suppress the intestinal cell differentiation and reduce the cell monolayer integrity. We suggest that chronic exposure on low levels of atrazine may lead to alteration in the expression of the morphological and functional features of the Caco-2 cells related to the transport and barrier function of small intestinal enterocytes. In consequence, this may lead to alterations in the intestinal absorption process.
显示更多 [+] 显示较少 [-]Plant-beneficial functions and interactions of Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 in co-culture by transcriptomics analysis
2021
Li, Yan | He, Yanhui | Wang, Wenfei | Li, Xueping | Xu, Xiaolin | Liu, Xiaochen | Li, Chun | Wu, Zhansheng
The development of mixed microbial agents can reduce the use of pesticides and fertilizers in agriculture. However, most previous studies focused only on the overall effects of mixed microbial agents and ignored the interactions between bacteria in mixed systems. In this study, Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 were used to explore the interactions between two different functional plant growth-promoting rhizobacteria (PGPR). The plant growth-promotion properties and inhibition rate of Rhizoctonia solani were determined, and the mechanism of the interactions under single and co-culture conditions was elucidated via transcriptomics analysis under single and co-culture conditions. Results showed that the co-culture was not conducive to B. subtilis SL-44 growth. Furthermore, the differentially expressed genes related to B. subtilis SL-44 developmental process and cell differentiation were downregulated by 82.7% and 84.8% respectively. Moreover, among the properties, only siderophore production by the mixed culture was higher than that of single cultures because of the upregulation of the siderophore-related genes of B. subtilis SL-44. In addition, results revealed the altruistic relationship between the two strains, and the chemical and non-chemical signals of their interaction. This study provides unique insights into PGPR interactions and offers guidance for the development and application of mixed microbial agents.
显示更多 [+] 显示较少 [-]