细化搜索
结果 1-10 的 27
Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model 全文
2021
Lee, Patsy | Shang, Shanshan | Shang, Jin | Wang, Wen-Xiong
Metal-organic frameworks (MOFs) are an emerging class of materials which have garnered increasing attention for their utility as adsorbents and photocatalysts in water treatment. Nevertheless, the environmental risks of MOFs, especially their underlying impacts on aquatic organisms, are not fully explored. Herein, the toxicity of multiple representative MOFs was systematically assessed using a freshwater green alga (Chlamydomonas reinhardtii) model. Six typical MOFs with different metal nodes or organic linkers, including four transition metal incorporated aluminum-based porphyrin MOFs [pristine Al-PMOF, Al-PMOF (Cu), Al-PMOF (Ni), and Al-PMOF (Co)], one amine-functionalized MOF NH₂-MIL-125 (Ti), and one bimetallic Hofmann MOF (NiCo-PYZ), were successfully synthesized and characterized. All the tested MOFs significantly reduced the chlorophyll content and inhibited the algal growth, with the most toxic materials being NiCo-PYZ and Al-PMOF (Cu). Distinct toxic mechanisms were observed for the tested MOFs. Metal ion release was the primary cause for algal toxicity induced by NiCo-PYZ. The algal toxicity induced by porphyrin MOFs could be explained by the combined effects of metal ion release and nutrient adsorption, agglomeration and physical interactions, and reactive oxygen species generation. NH₂-MIL-125 (Ti) showed higher stability and more biocompatibility than the other tested MOFs. MOFs concentrations with no harmful effects to algae can be taken as the threshold values for safe use and discharge of MOFs. The ecotoxicological risks of MOFs should be considered as the applied concentrations of MOFs at mg/mL levels in environmental remediation were much higher than the no harmful effect thresholds.
显示更多 [+] 显示较少 [-]Selenium(Ⅳ) alleviates chromium(Ⅵ)-induced toxicity in the green alga Chlamydomonas reinhardtii 全文
2021
Zhang, Baolong | Duan, Guangqian | Fang, Yingying | Deng, Xuan | Yin, Yongguang | Huang, Kaiyao
The wide range of industrial applications of chromium (Cr) has led to an increasing risk of water contamination by Cr(Ⅵ). However, efficient methods to remove or decrease the toxicity of Cr(Ⅵ) in situ are lacking. The main aim of this study was to investigate the mechanisms by which selenite alleviates chromium(Ⅵ)-induced toxicity in Chlamydomonas reinhardtii. Our results showed that K₂Cr₂O₇ had toxic effects on both the structure and physiology of C. reinhardtii in a dose-dependent manner. Adding selenite significantly alleviated chromium accumulation and toxicity in cells. RNA-seq data showed that the expression level of selenoproteins such as SELENOH was significantly increased. Both SELENOH-amiRNA knockdown mutants and selenoh insertional mutant produced more reactive oxygen species (ROS) and grew slower than the wild type, suggesting that SELENOH can reduce chromium toxicity by decreasing the levels of ROS produced by Cr(Ⅵ). We also demonstrated that selenite can reduce the absorption of Cr(Ⅵ) by cells but does not affect the process of Cr(Ⅵ) adsorption and efflux. This information on the molecular mechanism by which selenite alleviates Cr(Ⅵ) toxicity can be used to increase the bioremediation capacity of algae and reduce the human health risks associated with Cr(Ⅵ) toxicity.
显示更多 [+] 显示较少 [-]Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging 全文
2019
Nam, Sun-Hwa | Lee, Jieun | An, Youn-Joo
In the present study, we evaluate our previously developed non-destructive soil algal toxicity method using species from a different class of algae; Class Trebouxiophyceae (Chlorella vulgaris and Chlorella sorokiniana), and directly measure the photosynthetic activity of these species adsorbed onto the soil as a new toxicity endpoint. This study shows that non-destructive soil algal toxicity method is applicable to non-specific test species, including those of Class Trebouxiophyceae as well as Class Chlorophyceae (Chlorococcum infusionum and Chlamydomonas reinhardtii). Furthermore, by performing photosynthesis image analysis, we verify that it is possible to measure the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soils without the need to extract algal cells from the soil. We propose that the non-destructive soil algal toxicity method represents a novel technique for 1) evaluating pollutants in soil using non-specific algae and 2) conveniently and rapidly assessing the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soil as a new toxicity endpoint.
显示更多 [+] 显示较少 [-]Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid 全文
2017
Sun, Kai | Kang, Fuxing | Waigi, Michael Gatheru | Gao, Yanzheng | Huang, Qingguo
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn²⁺, Al³⁺, Ca²⁺, Cu²⁺, and Fe²⁺ ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM.
显示更多 [+] 显示较少 [-]Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii 全文
2014
Bravo, Andrea Garcia | Le Faucheur, Séverine | Monperrus, Mathilde | Amouroux, David | Slaveykova, Vera I.
Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii 全文
2014
Bravo, Andrea Garcia | Le Faucheur, Séverine | Monperrus, Mathilde | Amouroux, David | Slaveykova, Vera I.
The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of 199-isotopically enriched inorganic mercury (199IHg) and of 201-isotopically enriched monomethylmercury (201CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to 199IHg and 201CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of 201CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected.
显示更多 [+] 显示较少 [-]Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae 全文
2012
Worms, Isabelle A.M. | Boltzman, Jonathan | García, Miguel | Slaveykova, Vera I.
The present study examines the effect of carboxyl-CdSe/ZnS quantum dots (QDs) on Cu and Pb availability to microalgae with different cell wall characteristics: Chlorella kesslerii possessing a cellulosic cell wall and two strains of Chlamydomonas reinhardtii, a wall-less and a walled strain containing glycoproteins as the main cell wall component. Results demonstrated that QDs decreased Pb and Cu intracellular contents ({Cu}ᵢₙₜ and {Pb}ᵢₙₜ) in walled strains by a factor of 2.5 and 2, respectively, as expected by the decrease of about 70% and 40% in the dissolved Cu and Pb concentrations. QDs increased {Cu}ᵢₙₜ and {Pb}ᵢₙₜ in wall-less strain by a factor of 4 and 3.5. These observations were consistent with the observed association of QDs to the wall-less C. reinhardtii, and lack of association to walled algal strains. Suwannee River humic acid did not influence metal association to QDs, but decreased {Cu}ᵢₙₜ and {Pb}ᵢₙₜ in all microalgae.
显示更多 [+] 显示较少 [-]In situ evaluation of cadmium biomarkers in green algae 全文
2011
Simon, Dana F. | Davis, Thomas A. | Tercier-Waeber, Mary-Lou | England, Roxane | Wilkinson, Kevin J.
In situ measurements provide data that are the highly representative of the natural environment. In this paper, laboratory-determined biomarkers of Cd stress that were previously identified for the green alga Chlamydomonas reinhardtii, were tested in two French rivers: a contaminated site on the Riou Mort River and an “uncontaminated” reference site on the Lot River. Transcript abundance levels were determined by real time qPCR for biomarkers thought to be Cd sensitive. Transcript levels were significantly higher (>5 fold) for organisms exposed to the contaminated site as compared to those exposed at the uncontaminated site. Biomarker mRNA levels were best correlated to free Cd (Cd²⁺) rather than intracellular Cd, suggesting that they may be useful indicators of in situ stress. The paper shows that biomarker expression levels increased with time, were sensitive to metal levels and metal speciation and were higher in the “contaminated” as opposed to the “reference” site.
显示更多 [+] 显示较少 [-]Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii 全文
2019
Yang, Guang | Hadioui, Madjid | Wang, Qing | Wilkinson, Kevin J.
For divalent metals, the Biotic Ligand Model (BLM) has been proven to be an effective tool to predict biological effects by taking into account speciation calculations and competitive interactions. Nonetheless, the BLM has only rarely been validated for trivalent metals (e.g. rare earth elements), and the potential competitive effects of protons has been understudied. In this paper, the short-term biouptake of indium (In), a trivalent metal that is a byproduct of zinc extraction and used in numerous applications including the semiconductor industry, was evaluated under controlled conditions. Short-term (i.e. 60 min) indium biouptake by Chlamydomonas reinhardtii was measured as a function of pH in order to verify the validity of the BLM. At a given pH, In biouptake could be well described by the Michaelis-Menten equation with conditional stability constants of KIn,pH=4.0 = 106.7 M-1, KIn,pH=5.0 = 108.6 M-1, KIn,pH=6.0 = 109.3 M-1 and maximum internalization fluxes of Jmax, pH=4.0 = 0.74 × 10−14 mol cm−2 s−1, Jmax, pH=5.0 = 1.60 × 10−14 mol cm−2 s−1, Jmax, pH=6.0 = 2.22 × 10−14 mol cm−2 s−1. Although several potential mechanisms for the role of pH were examined, the results were best explained by a competitive interaction of H+ with the In uptake sites using overall stability constants of logKIn = 9.76 M-1 and logKH = 15.66 M-1. Based on these results, pH will play a critical role in bioavailability measurements of the trivalent cations in natural waters.
显示更多 [+] 显示较少 [-]Effect of mercury on the polyphosphate level of alga Chlamydomonas reinhardtii 全文
2018
Samadani, Mahshid | Dewez, David
In this study, the accumulation and toxicity effect of 1–7 μM of Hg was determined during 24–72 h on two strains of Chlamydomonas reinhardtii, CC-125 and CC-503 as a cell wall-deficient mutant, by monitoring the growth rate and the maximum quantum yield of Photosystem II. In addition, the level of extracytoplasmic polyphosphates (polyP related to the cell wall) was determined to understand the polyP physiological role in Hg-treated algal cells. The results showed that the polyP level was higher in the strain CC-125 compared to CC-503. When algal cells were exposed to 1 and 3 μM of Hg, the accumulation of Hg was correlated with the degradation of polyP for both strains. These results suggested that the degradation of polyP participated in the sequestration of Hg. In fact, this mechanism might explain at 72 h the recovery of the polyP level, the efficiency of maximum PSII quantum yield, the low inhibition of growth rate, and the low accumulated Hg in algal biomass. Under the effect of 5 and 7 μM of Hg, the degradation of polyP was complete and could not be recovered, which was caused by a high accumulation and toxicity of Hg already at 24 h. Our results demonstrated that the change of polyP level was correlated with the accumulation and effect of Hg on algal cells during 24–72 h, which can be used as a biomarker of Hg toxicity. Therefore, this study suggested that extracytoplasmic polyP in C. reinhardtii contributed to the cellular tolerance for Hg.
显示更多 [+] 显示较少 [-]The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms 全文
2018
Wang, Jiaying | Wang, Jingpeng | Liu, Jinsong | Li, Jianzhi | Zhou, Lihong | Zhang, Huanxin | Sun, Jianteng | Zhuang, Shulin
The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants.
显示更多 [+] 显示较少 [-]