细化搜索
结果 1-7 的 7
Silver stress differentially affects growth of phototrophic and heterotrophic chrysomonad flagellate populations
2019
Böck, Christina | Zimmermann, Sonja | Beisser, Daniela | Dinglinger, Sarah-Maria | Engelskirchen, Simone | Giesemann, Philipp | Klink, Saskia | Olefeld, Jana Laura | Rahmann, Sven | Vos, Matthijs | Boenigk, Jens | Sures, Bernd
Silver ions are among the predominant anthropogenic introduced pollutants in aquatic systems. As silver has effects on species at all trophic levels the community composition in aquatic habitats can be changed as a result of silver stress. The response of planktonic protists to environmental stressors is particularly important as they act both as producers and consumers in complex planktonic communities. Chrysomonad flagellates are of major interest, since this group includes heterotrophic, mixotrophic and phototrophic taxa, and therefore allows analysis of silver stress in organisms with contrasting nutritional strategies independent of a potential taxonomic bias. In a series of lab experiments, we compared the response of different trophic chrysophyte strains to low (5 μg L⁻¹), medium (10 μg L⁻¹) and high (20 μg L⁻¹) nominal Ag concentrations in combination with changes in temperature and light intensity (phototrophs), temperature and food concentration (heterotrophs), or a combination of the above settings (mixotrophs). All tested strains were negatively affected by silver in their growth rates. The phototrophic strains reacted strongly to silver stress, whereas light intensity and temperature had only minor effects on growth rates. For heterotrophic strains, high food concentration toned down the effect of silver, whereas temperatures outside the growth optimum had a combined stress effect. The mixotrophic strains reacted differently depending on whether their nutritional mode was dominated by heterotrophy or by phototrophy. The precise response pattern across all variables was uniquely different for every single species we tested. The present work contributes to a deeper understanding of the effects of environmental stressors on complex planktonic communities. It indicates that silver will negatively impact planktonic communities and may create shifts in their composition and functioning.
显示更多 [+] 显示较少 [-]How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides
2019
Niu, Zhiguang | Xu, Wei’an | Na, Jing | Lv, Zhiwei | Zhang, Ying
Antibiotics have been widely detected in the ocean and have various impacts on the environment, while knowledge of their chronic influence on phytoplankton, especially red tide algae, is still limited. Dinoflagellates and green algae are common phytoplankton in marine ecosystems. The former is the main red tide algae, and the latter is an important primary producer. We investigated the long-term responses of two representative algae, Prorocentrum lima and Chlorella sp., to two common antibiotics (sulfamethoxazole (SMX) and norfloxacin (NFX)) at environmentally relevant levels (10 and 100 ng/L) during simulated natural conditions. The cell density and activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) were analyzed. The results showed that the influence of each antibiotic on Chlorella sp. was not significant (p > 0.05) during the first 10 days, but the influence of the antibiotics later began to show significant inhibition (p < 0.05) compared with the control group, especially during mixed exposure. P. lima was not inhibited, but its cell density increased. SMX had a superior stimulation effect on P. lima. The three enzymes activities of P. lima increased, and the antioxidant mechanism was not seriously impacted. However, for Chlorella sp., the activity of SOD increased while the activities of CAT and POD decreased, suggesting that this algae’s antioxidant system was unbalanced due to oxidative stress. Based on our results, the growth of P. lima was different from green algae Chlorella sp. as well as other inhibited marine algae (such as diatom, golden algae) studied in previous studies. Therefore, as a typical pollutant in the ocean, antibiotics may play a positive role in the bloom of dinoflagellate red tides.
显示更多 [+] 显示较少 [-]Community structure and ecological responses to hydrological changes in benthic algal assemblages in a regulated river: application of algal metrics and multivariate techniques in river management
2021
Atazadeh, Ehsan | Gell, Peter | Mills, Keely | Barton, Andrew | Newall, Peter
The flow regime of the Wimmera River was substantially modified due to the construction of a water supply reservoir. Samples of diatoms and soft algae and measurements of water quality were analysed at ten sampling sites for 3 years (between February 2012 and November 2014) along the MacKenzie River, a tributary of the Wimmera River, in different seasons and under different flow regimes, to understand the spatial and temporal variation in the relationship between algal communities, water quality and stream condition. Baseline information on algal communities and water quality was collected during base flow conditions, while experiments on the effect of water releases on algal communities were based on flow regime variations (manipulated flow regimes), specifically on the algae community structure, water quality and ecosystem function. Algal species composition changed along the river under different flow regimes and different seasons. Under base flow, Bacillariophyta (diatoms) were more abundant upstream, and filamentous green algae were more abundant downstream. The results showed that the algal composition shifted downstream after water release events. Chlorophyta (green algae), Cyanophyta (blue-green algae) and Chrysophyta gradually increased from upstream to downstream under base flow conditions and before water releases, whereas diatoms were greater upstream and increased downstream after water releases. The results are presented to tailor discharge and duration of the river flows by amalgamation of consumptive and environmental flows to improve the condition of the stream thereby supplementing the flows dedicated to environmental outcomes.
显示更多 [+] 显示较少 [-]Phytoplankton community structure in relation to environmental factors and ecological assessment of water quality in the upper reaches of the Genhe River in the Greater Hinggan Mountains
2019
Li, Xiaoyu | Yu, Hongxian | Wang, Huibo | Ma, Chengxue
Phytoplankton assemblages were investigated in 2015 along the seasonal changes of the Genhe River in the Greater Hinggan Mountains. The survey was performed in June (spring), August (summer), and October (autumn) at nine sampling stations to study the community composition, abundance, and biodiversity. The results showed that 61 species belonging to 16 genera were identified, including Bacillariophyta of 31 species, Dinophyta 2 species, Cyanophyta 2 species, Chlorophyta 20 species, Chrysophyta 2 species, and Cryptophyta 1 species; Besides, Bacillariophyta are dominant species. Shannon-Wiener (H′) and Pielou (J′) indices indicated that phytoplankton community was stable. And these two indices were significantly lower in summer than in spring and autumn. Phytoplankton abundance and biomass show significant differences in each season. The total phytoplankton abundance (1122.3 × 104 ind/L) and biomass (6.5709 mg/L) in summer are much higher than that in spring and autumn. There were few species and low abundance and biomass in the upper reaches of Genhe River; this fact can be explained by the cold climate in the Greater Higgnan Mountains region. Canonical correspondence analysis (CCA) was used to analyze the data. It revealed that Fe³⁺, Cu²⁺, pH, and water temperature (WT) were responsible for most of the variation in space in the phytoplankton community. These environmental parameters play an essential role in the community structure variation of phytoplankton in the upper reaches of Genhe River, the strong association between phytoplankton community structure and ecological factors is varied in each season.
显示更多 [+] 显示较少 [-]Phytoplankton distribution characteristics and its relationship with bacterioplankton in Dianchi Lake
2020
Zhang, Yu | Zuo, Jiane | Salimova, Alisa | Li, Aijun | Li, Ling | Li, Di
Phytoplankton and bacterioplankton perform important ecological functions in lake ecosystem. In this paper, the abundance and composition of phytoplankton and bacterioplankton at 13 sites of Dianchi lake during the wet and dry seasons were monitored, and the relationship between phytoplankton and bacterioplankton in this plateau lake was studied. Phytoplankton community structure analysis was carried out by ocular method, and bacterioplankton was investigated by high-throughput 16S rRNA gene Illumina sequencing. The relationship between phytoplankton and bacterioplankton was observed using redundancy analysis. The results showed that 87 species of phytoplankton belonging to 5 phyla and 29 genera were identified in Dianchi lake. Phytoplankton diversity and richness were higher in the wet season than those in the dry season. In the wet season, Cyanophyta was the dominant phylum whose density was 2.01 × 10⁸ cells/L, accounting for more than 90% of the total algae, then followed by Chlorophyta, Bacillariophyta, Chrysophyta, and Cryptophyta. The spatial distribution of phytoplankton in the wet season and dry seasons showed significant differences. In the dry season, the north-central part of Dianchi lake was dominated by Limnothrix redekei and Microcystis minutissima of Cyanophyta, while Pseudanabaena moniliformis and Coelosphaerium nagelianum of Cyanophyta mainly was dominated in the south of Dianchi lake. In the wet season, Microcystis minutissima of Cyanophyta was the dominant species all the area, while Limnothrix redekei of Cyanophyta was second dominant. Proteobacteria and Bacteroidetes were the dominant phyla among bacterioplankton. The community structure of bacterioplankton was influenced by Cyanophyta and Bacillariophyta. Cyanophyta had a major influence on Pseudomonas, Acinetobacter of Proteobacteria, and Flavobacterium of Bacteroidetes. Bacillariophyta showed a strong correlation with Gemmobacter, Stenotrophomonas, and Aeromonas of Proteobacteria. Cyanophyta and Bacillariophyta produced the most significant impact on predicted functional genes of bacterioplankton, and the predicted functional genes of the samples were different in different seasons. Cell densities of Cyanophyta were positively related to metabolism-predicted functional genes of bacterioplankton. Bacillariophyta and Cryptophyta had an impact on most of the cellular processes and signaling predicted functional genes. Bacterioplankton-predicted functional gene information storage and processing were significantly affected by cell densities of Chlorophyta. Therefore, the analysis of the phytoplankton community and the bacterioplankton-predicted functional gene in Dianchi lake exerts a great significance in revealing the ecosystem function of plateau lakes and harmful algal bloom control.
显示更多 [+] 显示较少 [-]Algal Community Dynamics and Underlying Driving Factors in Some Crenic Habitats of Kashmir Himalaya
2021
Lone, Showkat Ahmad | Hamid, Aadil | Bhat, Sami Ullah
Given the authoritative and well-documented publication records that crenic habitats support the substantial aquatic biodiversity, understanding of algal dynamics in response to anthropogenic and natural stressors in these crenic systems seems paramount. We sampled and monitored twelve freshwater springs for a period of 2 years from 2014 to 2015 to observe algal dynamics and the factors govern the distribution and dynamics. We used ANOVA, nMDS, PCA, ANOSIM, SIMPER, and BIOENV to reveal the key physicochemical variables influencing the distributional pattern and dynamics of algae. The analysis of variance (ANOVA, Tukey’s post hoc test) revealed significant difference among the springs with dominance of Bacillariophyceae (62%) followed by Chlorophyceae (18%) whereas nMDS ordination of abundance data in two-dimensional space resulted in a significant separation between spring sites (stress value of 0.13). One-way nested ANOSIM produced a significant distinction between periphytic algal communities in springs (global test R = 0.928, p = 0.001). The results of SIMPER revealed the highest average dissimilarity (60.95%) between springs S4 and S5, with the top five contributing families including Cyanophyceae (30.25%), Bacillariophyceae (25.98%), Rhodophyceae (16.74%), Chlorophyceae (13.64%), and Chrysophyceae (13.39%). BIOENV analysis of the periphytic algal data suggested that the assemblage pattern in all crenic habitats were controlled by discharge, conductivity, dissolved oxygen, total alkalinity, and total phosphorus. Since, springs are groundwater-dependent ecosystems acting as ecohydrologic refugia, any small change in groundwater discharge could strongly influence the ambient conditions (including water quality and temperature), which in turn influences the biological assemblage patterns and ecosystem services. Therefore, changes in discharge may provide information on possible future ecological change in the springs in relation to rising aridification.
显示更多 [+] 显示较少 [-]Algae community and trophic state of subtropical reservoirs in southeast Fujian, China
2012
Yang, Jun | Yu, Xiaoqing | Liu, Lemian | Zhang, Wenjing | Guo, Peiyong
BACKGROUND,: aim, and scope Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian. MATERIALS AND METHODS: Surface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods. RESULTS AND DISCUSSION: Shallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P < 0.05. Our canonical correspondence analysis (CCA) results illustrated that temperature, transparency, conductivity, DO, TC, NH4-N, NO x -N, TP, and chlorophyll a were significant environmental variables affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore, the degradation of water quality associated with excess levels of nitrogen and phosphorus in Fujian reservoirs may be impacted by interactions among agriculture and urban factors. A watershed-based management strategy, especially phosphorus control, should be developed for drinking water source protection and sustainable reservoirs in the future. CONCLUSION AND RECOMMENDATIONS: All investigated reservoirs were eutrophicated based on the comprehensive TSI values; thus, our results provided an early warning of water degradation in Fujian reservoirs. Furthermore, the trophic state plays an important role in shaping community structure and in determining species diversity of algae. Therefore, long-term and regular monitoring of Euglenophyta, Cyanophyta, TN, TP and chlorophyll a in reservoirs is urgently needed to further understand the future trend of eutrophication and to develop a watershed-based strategy to manage the Cyanophyta bloom hazards.
显示更多 [+] 显示较少 [-]