细化搜索
结果 1-10 的 67
Modulation mechanism of phytotoxicity on Ipomoea aquatica Forssk. by surface coating-modified copper oxide nanoparticles and its health risk assessment 全文
2022
Huang, Yue | Bai, Xue | Li, Chang | Kang, Meng'en | Weng, Yuzhu | Gong, Dongqing
To evaluate the influence of surface coatings on nano-fertilizers uptake and their phytotoxicity to crops and its health risk to Chinese adults, trisodium citrate (TC) and polyethylene glycol (PEG) coatings were prepared on the surface of copper oxide nanoparticles (CuO NPs), respectively, with 100 and 500 mg/L of bare CuO NPs, TC-CuO NPs, and PEG-CuO NPs were exposed to soil-grown Ipomoea aquatica Forssk. Combined bio-transmission electron microscopy and micro-CT observed cellular migration of coated CuO NPs in symplastic and apoplastic pathways, as well as nanoparticles transported through vascular tissues to the above-ground parts. Since TC-CuO NPs had less inhibition on vascular phylogeny of I. aquatica roots which was determined by RT-qPCR, their migration in plants was more efficient, thus exhibiting greater phytotoxicity to shoots. Meanwhile, coatings significantly reduced the phytotoxicity of CuO NPs by stimulating plant antioxidant defense. The risk of CuO nano-fertilizers on human dietary safety was evaluated, the HQ > 1 in the 500 mg/L CuO NPs treatment indicated a potential health risk to Chinese adults, which was reduced by the coatings. This work explored for the first time the mechanism of coating effects on nanoparticles migration efficiency and phytotoxicity at the molecular level and demonstrated that the migration of nanoparticles between tissues could have an impact on phytotoxicity. It implied that coating can be tailored to target nanoparticles to specific regions of the plant. In addition, this study highlights the potential health risks associated with the consumption of I. aquatica fertilized with CuO NPs and provides valuable insights into the environmental applications of nano-fertilizers.
显示更多 [+] 显示较少 [-]Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves 全文
2020
Yang, Tao-Yu | Qi, Yi-Ping | Huang, Hui-Yu | Wu, Fenglin | Huang, Wei-Tao | Deng, Chong-Ling | Yang, Lin-Tong | Chen, Li-Song
Low pH and aluminum (Al)-toxicity often coexist in acidic soils. Citrus sinensis seedlings were treated with nutrient solution at a pH of 2.5, 3.0, 3.5 or 4.0 and an Al concentration of 0 or 1 mM for 18 weeks. Thereafter, malate, citrate, isocitrate, acid-metabolizing enzymes, and nonstructural carbohydrates in roots and leaves, and release of malate and citrate from roots were measured. Al concentration in roots and leaves increased under Al-toxicity, but it declined with elevating nutrient solution pH. Al-toxicity increased the levels of glucose, fructose, sucrose and total soluble sugars in leaves and roots at each given pH except for a similar sucrose level at pH 2.5–3.0, but it reduced or did not alter the levels of starch and total nonstructural carbohydrates (TNC) in leaves and roots with the exception that Al improved TNC level in roots at pH 4.0. Levels of nonstructural carbohydrates in roots and leaves rose with reducing pH with a few exceptions with or without Al-toxicity. A potential model for the possible role of root organic acid (OA) metabolism (anions) in C. sinensis Al-tolerance was proposed. With Al-toxicity, the elevated pH upregulated the OA metabolism, and increased the flow of carbon to OA metabolism, and the accumulation of malate and citrate in roots and subsequent release of them, thus reducing root and leaf Al and hence eliminating Al-toxicity. Without Al-toxicity, low pH stimulated the exudation of malate and citrate, an adaptive response of Citrus to low pH. The interactive effects of pH and pH on OA metabolism were different between roots and leaves.
显示更多 [+] 显示较少 [-]Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification 全文
2019
Cao, Qin | Liu, Xiaofeng | Li, Na | Xie, Zhijie | Li, Zhidong | Li, Dong
Microaerobic and hypoxic methane oxidation coupled to denitrification (MAME-D and HYME-D) occur in stabilized landfills with leachate recirculation when biological denitrification is limited by lack of organics. To evaluate nitrate denitrification efficiency and culture MAME-D/HYME-D involved bacteria, a leach bed bioreactor semi-continuous experiment was conducted for 60 days in 5 runs, under nitrate concentrations ranging of 20 mg/L–55 mg/L, wherein 5% sterile leachate was added during runs 4 and 5. Although the HYME-D system demonstrated high denitrification efficiency (74.93%) and nitrate removal rate reached 2.62 mmol N/(L⋅d), the MAME-D system exhibited a denitrification efficiency of almost 100% and nitrate removal rate of 4.37 mmol N/(L⋅d). The addition of sterile leachate increased the nitrate removal rate in both systems, but caused the decrease of methane consumption in HYME-D. A stable isotope batch experiment was carried out to investigate the metabolic products by monitoring the 13CO2 and 15N2O production. The production of organic intermediates such as citrate, lactic acid, acetate, and propionic acid were also observed, which exhibited a higher yield in HYME-D. Variations in the microbial communities were analyzed during the semi-continuous experiment. MAME-D was mainly conducted by the association of type Ⅰ methanotroph Methylomonas and the methylotrophic denitrifier Methylotenera. Methane fermentation processed by Methylomonas under hypoxic conditions produced more complex organic intermediates and increased the diversity of related heterotrophic denitrifiers. The addition of sterile real leachate, resulting in increase of COD/N, influenced the microbial community of HYME-D system significantly.
显示更多 [+] 显示较少 [-]Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide 全文
2015
Sigg, Laura | Lindauer, Ursula
Dissolution of silver nanoparticles (AgNP with carbonate or citrate coating, total Ag 1–5 μM) was examined in the presence of the ligands cysteine, chloride and fulvic acids and of the oxidant hydrogen peroxide (H2O2) at low concentrations at pH 7.5. Dissolved Ag was separated from AgNP by ultrafiltration. Cysteine in the concentration range 0.2–5 μM resulted in an initial increase of dissolved Ag within few hours. Chloride (up to 0.1 mM) and fulvic acids (up to 15 mg L−1) had little effect on the dissolution of AgNP within hours to days. In contrast, very rapid dissolution within 1–2 h of both carbonate and citrate coated AgNP was observed in the presence of H2O2 in the concentration range 0.1–10 μM, under dark or light conditions. The high efficiency of H2O2 in dissolving AgNP is likely to be of importance in toxic effects of AgNP to algae, as H2O2 is produced and released into solution by algae.
显示更多 [+] 显示较少 [-]Dissolution of metal and metal oxide nanoparticles in aqueous media 全文
2014
Odzak, Niksa | Kistler, David | Behra, Renata | Sigg, Laura
The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media.
显示更多 [+] 显示较少 [-]A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions 全文
2014
Topuz, Emel | Sigg, Laura | Talinli, Ilhan
This study aims to investigate effects of freshwater components in order to predict agglomeration behavior of silver nanoparticles coated with citrate (AgNP-Cit), polyvinylpyrrolidone (AgNP-PVP), and of TiO2 nanoparticles. Agglomeration studies were conducted in various media based on combinations of ions, natural organic matter (humic, fulvic acid) and surfactants (sodium dodecyl sulfate, alkyl ethoxylate), at a constant ionic strength of 10 mM over time for up to 1 week. Agglomeration level of AgNP-Cit and TiO2 was mostly dependent on the concentration of Ca2+ in media, and their size strongly increased to micrometer scale over 1 week. However, AgNP-Cit and TiO2 were stabilized to particle size around 500 nm in the presence of NOM, surfactants and carbonate over 1 week. AgNP-PVP maintained their original size in all media except in the presence of Mg2+ ions which led to significant agglomeration. Behavior of these engineered nanoparticles was similar in a natural freshwater medium.
显示更多 [+] 显示较少 [-]Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate 全文
2008
Labanowski, J. | Monna, F. | Bermond, A. | Cambier, P. | Fernández, C. | Lamy, I. | Oort, F van
Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate 全文
2008
Labanowski, J. | Monna, F. | Bermond, A. | Cambier, P. | Fernández, C. | Lamy, I. | Oort, F van
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth. Kinetically defined metal fractions mimic mobility aspects of heavy metals.
显示更多 [+] 显示较少 [-]Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. 全文
2008
Labanowski , Jérome (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Monna , Fabrice (Centre National de la Recherche Scientifique, Dijon(France). Univ. de Bourgogne Centre des Sciences de la Terre) | Bermond , Alain (INRA , Thiverval-Grignon (France). UMR 1091 Environnement et Grandes Cultures) | Cambier , Philippe (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Fernandez , Christelle (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Lamy , Isabelle (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Van Oort , Folkert (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés)
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.
显示更多 [+] 显示较少 [-]Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. 全文
2008
Labanowski, Jérôme | Monna, Fabrice | Bermond, Alain | Cambier, Philippe | Fernandez, Christelle | Lamy, Isabelle | van Oort, Folkert | Physicochimie et Ecotoxicologie des SolS d'Agrosystèmes Contaminés (PESSAC) ; Institut National de la Recherche Agronomique (INRA) | Archéologies, Cultures et Sociétés (ACS) ; Ministère de la Culture et de la Communication (MCC)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | Biogéosciences [UMR 5561] [Dijon] ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.
显示更多 [+] 显示较少 [-]Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. 全文
2008
Labanowski, Jérome | Monna, Fabrice | Bermond, Alain | Cambier, Philippe | Fernandez, Christelle | Lamy, Isabelle | Van Oort, Folkert
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.
显示更多 [+] 显示较少 [-]Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils 全文
2021
Inoculation of soil or seeds with plant growth promoting bacteria ameliorates metal toxicity to plants by changing metal speciation in plant tissues but the exact location of these changes remains unknown. Knowing where the changes occur is a critical first step to establish whether metal speciation changes are driven by microbial metabolism or by plant responses. Since bacteria concentrate in the rhizosphere, we hypothesised steep changes in metal speciation across the rhizosphere. We tested this by comparing speciation of zinc (Zn) in roots of Brassica juncea plants grown in soil contaminated with 600 mg kg⁻¹ of Zn with that of bulk and rhizospheric soil using synchrotron X-ray absorption spectroscopy (XAS). Seeds were either uninoculated or inoculated with Rhizobium leguminosarum bv. trifolii and Zn was supplied in the form of sulfide (ZnS nanoparticles) and sulfate (ZnSO₄). Consistent with previous studies, Zn toxicity, as assessed by plant growth parameters, was alleviated in B. juncea inoculated with Rhizobium leguminosarum. XAS results showed that in both ZnS and ZnSO₄ treatments, the most significant changes in speciation occurred between the rhizosphere and the root, and involved an increase in the proportion of organic acids and thiol complexes. In ZnS treatments, Zn phytate and Zn citrate were the dominant organic acid complexes, whilst Zn histidine also appeared in roots exposed to ZnSO₄. Inoculation with bacteria was associated with the appearance of Zn cysteine and Zn formate in roots, suggesting that these two forms are driven by bacterial metabolism. In contrast, Zn complexation with phytate, citrate and histidine is attributed to plant responses, perhaps in the form of exudates, some with long range influence into the bulk soil, leading to shallower speciation gradients.
显示更多 [+] 显示较少 [-]Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF 全文
2020
do Nascimento, Clístenes Williams Araujo | Hesterberg, Dean | Tappero, Ryan | Nicholas, Sarah | da Silva, Fernando Bruno Vieira
Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg⁻¹). Synchrotron micro X-ray fluorescence (μ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The μ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.
显示更多 [+] 显示较少 [-]Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption 全文
2020
Yang, Xiong | Liu, Lihu | Tan, Wenfeng | Liu, Chengshuai | Dang, Zhi | Qiu, Guohong
Remediation of heavy metal contaminated soils remains a global challenge. Here, low-molecular-weight organic acids were used to extract Cu and Zn from polluted soils, and the extracted heavy metals were subsequently adsorbed by activated carbon electrodes. The electrochemical adsorption mechanism as well as the influence of pH, organic acid type and voltage were investigated, and the soil remediation effect was further evaluated by the cultivation of rape. After extraction by citrate at initial pH 8.3 and electrochemical adsorption at 0.9 V for 7 d, the concentrations of total and bioavailable Cu in soils decreased from 1090 to 281 to 391 and 52 mg kg⁻¹, and those of Zn decreased from 262 to 39 to 208 and 30 mg kg⁻¹, respectively. Cu and Zn ions were mainly electrochemically adsorbed on the carbon cathode and anode, respectively, resulting in decreases of their concentrations to below 1 mg L⁻¹ in the leachate. The presence of organic acids improved the remediation performance in the order of citrate > oxalate > acetate. The decrease in the initial pH of citrate solution enhanced the removal rate of Zn, while seemed to have no effect on that of Cu. The removal capacity for heavy metals decreased with decreasing cell voltage from 0.9 to 0.3 V. In the rape cultivation experiment, the Cu and Zn contents in shoot and root were decreased by more than 50%, validating the soil remediation effect. The present work proposes a facile method for heavy metal removal from contaminated soils.
显示更多 [+] 显示较少 [-]