细化搜索
结果 1-10 的 58
Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound
2013
Mortazavi, Behzad | Horel, Agota | Anders, Jennifer S. | Mirjafari, Arsalan | Beazley, Melanie J. | Sobecky, Patricia A.
We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg−1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons.
显示更多 [+] 显示较少 [-]Identification and quantification of a novel nitrate-reducing community in sediments of Suquía River basin along a nitrate gradient
2010
Reyna, Luciana | Wunderlin, Daniel Alberto | Genti-Raimondi, Susana
We evaluated the molecular diversity of narG gene from Suquía River sediments to assess the impact of the nitrate concentration and water quality on the composition and structure of the nitrate-reducing bacterial community. To this aim, a library of one of the six monitoring stations corresponding to the highest nitrate concentration was constructed and 118 narG clones were screened. Nucleotide sequences were associated to narG gene from alpha-, beta-, delta-, gammaproteobacteria and Thermus thermophilus. Remarkably, 18% of clones contained narG genes with less than 69% similarity to narG sequences available in databases. Thus, indicating the presence of nitrate-reducing bacteria with novel narG genes, which were quantified by real-time PCR. Results show a variable number of narG copies, ranging from less than 1.0 × 102 to 5.0 × 104 copies per ng of DNA, which were associated with a decreased water quality index monitored along the basin at different times.
显示更多 [+] 显示较少 [-]Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community
2009
Tervahauta, Arja I. | Fortelius, Carola | Tuomainen, Marjo | Akerman, Marja-Leena | Rantalainen, Kimmo | Sipilä, Timo | Lehesranta, Satu J. | Koistinen, Kaisa M. | Kärenlampi, Sirpa | Yrjälä, Kim
Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p <= 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils. Birch can enhance degradation of PAH compounds in the rhizosphere.
显示更多 [+] 显示较少 [-]Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna
2019
Sadler, Daniel E. | Brunner, Franziska S. | Plaistow, Stewart J.
Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution.
显示更多 [+] 显示较少 [-]Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones
2018
Shang, Bo | Feng, Zhaozhong | Li, Pin | Calatayud, Vicent
The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’) and 107 (P. euramericana cv. ‘74/76’) with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles.
显示更多 [+] 显示较少 [-]Root biomass production in populations of six rooted macrophytes in response to Cu exposure: Intra-specific variability versus constitutive-like tolerance
2014
Marchand, L. | Nsanganwimana, F. | Lamy, J.B. | Quintela-Sabaris, C. | Gonnelli, C. | Colzi, I. | Fletcher, T. | Oustrière, N. | Kolbas, A. | Kidd, P. | Bordas, F. | Newell, P. | Alvarenga, P. | Deletic, A. | Mench, M.
Intra-specific variability of root biomass production (RP) of six rooted macrophytes, i.e. Juncus effusus, Phragmites australis, Schoenoplectus lacustris, Typha latifolia, Phalaris arundinacea, and Iris pseudacorus grown from clones, in response to Cu exposure was investigated. Root biomass production varied widely for all these macrophytes in control conditions (0.08 μM) according to the sampling site. Root biomass production of T. latifolia and I. pseudacorus in the 2.5–25 μM Cu range depended on the sampling location but not on the Cu dose in the growth medium. For P. australis, J. effusus, S. lacustris, and P. arundinacea, an intra-specific variability of RP depending on both the sampling location and the Cu-dose was evidenced. This intra-specific variability of RP depending on the sampling location and of Cu-tolerance for these last four species suggests that Cu constitutive tolerance for all rooted macrophytes is not a species-wide trait but it exhibits variability for some species.
显示更多 [+] 显示较少 [-]Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater
2013
Cho, Kun-Ching | Lee, Do Gyun | Roh, HyungKeun | Fuller, Mark E. | Hatzinger, Paul B. | Chu, Kung-Hui
We employed stable isotope probing (SIP) with 13C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving 13C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates.
显示更多 [+] 显示较少 [-]Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3
2010
Darbah, Joseph N.T. | Kubiske, Mark E. | Nelson, Neil | Kets, Katre | Riikonen, Johanna | Sober, Anu | Rouse, Lisa | Karnosky, David F.
Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/Ci measurements monthly during the 2004-2008 growing seasons. Our results suggest that the responses of two aspen clones differing in O3 sensitivity showed no evidence of photosynthetic and stomatal acclimation under either elevated CO2, O3 or CO2 + O3. Both clones 42E and 271 did not show photosynthetic nor stomatal acclimation under elevated CO2 and O3 after a decade of exposure. We found that the degree of increase or decrease in the photosynthesis and stomatal conductance varied significantly from day to day and from one season to another. We report of no evidence of photosynthetic and stomatal acclimation in aspen trees grown under elevated CO2 and O3 after over a decade of exposure.
显示更多 [+] 显示较少 [-]Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil
2009
Castiglione, S. | Todeschini, V. | Franchin, C. | Torrigiani, P. | Gastaldi, D. | Cicatelli, A. | Rinaudo, C. | Berta, G. | Biondi, S. | Lingua, G.
Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance High survival rate and heavy metal accumulation are associated with high polyamine concentration in an elite poplar clone.
显示更多 [+] 显示较少 [-]Biodiversity buffer the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau, Southwest China
2022
Wang, Hao | Zhang, Xiaolin | Shan, Hang | Chaochao lv, | Ren, Wenjing | Wen, Zihao | Tian, Yuqing | Weigel, Benjamin | Ni, Leyi | Cao, Te
Increasing eutrophication poses a considerable threat to freshwater ecosystems, which are closely associated with human well-being. As important functional entities for freshwater ecosystems, submerged macrophytes have suffered rapidly decline with eutrophication. However, it is unclear whether and how submerged macrophytes maintain their ecological functions under increasing eutrophication stress and the underlying patterns in the process. In the current study, we conducted an extensive survey of submerged macrophytes in 49 lakes and reservoirs (67% of them are eutrophic) on the Yunnan-Guizhou Plateau of southwestern China to reveal the relationship between submerged macrophyte biodiversity and ecosystem functioning (BEF) under eutrophication stress. Results showed that submerged macrophytes species richness, functional diversity (FD), and β diversity had positive effects on ecosystem functioning, even under eutrophication. Functional diversity was a stronger predictor of community biomass than species richness and β diversity, while species richness explained higher coverage variability than FD and β diversity. This suggests that species richness was a reliable indicator when valid functional traits cannot be collected in considering specific ecological process. With increasing eutrophication in water bodies, the mechanisms underlying biodiversity-ecosystem functioning evolved from “niche complementarity” to “selection effects”, as evidenced by decreased species turnover and increased nestedness. Furthermore, the relative growth rate, specific leaf area, and ramet size in trade-off of community functional composition became smaller along eutrophication while flowering duration and shoot height became longer. This study contributes to a better understanding of positive BEF in freshwater ecosystems, despite increasing anthropogenic impacts. Protecting the environment remained the effective way to protect biodiversity and corresponding ecological functions and services. We hope focus on specific eco-functioning in future studies so as to effective formulation of management plans.
显示更多 [+] 显示较少 [-]