细化搜索
结果 1-10 的 43
Rape straw application facilitates Se and Cd mobilization in Cd-contaminated seleniferous soils by enhancing microbial iron reduction
2022
Lyu, Chenhao | Li, Lei | Liu, Xinwei | Zhao, Zhuqing
Many naturally seleniferous soils are faced with Cd contamination problem, which severely limits crop cultivation in these areas. Straw returning has been widely applied in agricultural production due to its various benefits to soil physicochemical properties, soil fertility, and crops yield. However, effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils remain largely unclear. Therefore, the effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils were investigated in this study. The results showed that iron reduction driven by Clostridium and Anaeromyxbacter was responsible for the variations in Se and Cd fates in soil. Straw application respectively increased the gene copy numbers of Clostridium and Anaeromyxbacter by 19.5–56.3% and 33.6–39.8%, thus promoting iron reductive dissolution, eventually resulting in a high release amount of Se and Cd from Fe(III) (oxyhydr) oxides. Under reducing conditions, the released Cd was adsorbed by the newly formed metal sulfides or reacted with sulfides to generate CdS precipitates. Straw application decreased the soil exchangeable Se and soil exchangeable Cd concentration during flooding phase. However, straw application significantly increased Se/Cd in soil solution which had the highest bioavailability during flooding. In addition, straw application increased soil exchangeable Se concentration, but it had no significant effects on soil exchangeable Cd concentration after soil drainage. Taken together, straw application increased Se bioavailability and Cd mobility. Therefore, straw application is an effective method for improving Se bioavailability, but it is not suitable for the application to Cd-contaminated paddy soils. In the actual agricultural production, straw could be applied in seleniferous soils to improve Se bioavailability. At the same time, straw application should be cautious to avoid the release of Cd from Cd-contaminated soil.
显示更多 [+] 显示较少 [-]Influence of tetracycline on arsenic mobilization and biotransformation in flooded soils
2022
Shen, Yue | Yu, Haodan | Lin, Jiahui | Guo, Ting | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
This study examined the effect of tetracycline addition on arsenic (As) mobilization and biotransformation in two contrasting soils (upland soil and paddy soil) under flooded conditions. The soils with added tetracycline (0–50 mg kg⁻¹) were incubated for 30 days, and soil properties and microbial functional genes over time were quantified. Tetracycline significantly promoted As reduction and As release into porewater in both soils. The enhancement had resulted from an increase in the concentration of dissolved organic carbon and a decrease in soil redox potential. Tetracycline also increased the abundances of As-reducing genes (arsC and arrA) and the relative abundances of As-reducing bacteria Streptomyces, Bacillus, Burkholderia, Clostridium and Rhodococcus, all of which have been found resistant to tetracycline. These genera play a key part in stimulating As reduction in the presence of tetracycline. The study indicated the significance of tetracycline in the biochemical behavior of As in flooded soils and provided new insights into the potential effects of tetracycline on the quality and safety of agricultural products in the future.
显示更多 [+] 显示较少 [-]Influence of non-dechlorinating microbes on trichloroethene reduction based on vitamin B12 synthesis in anaerobic cultures
2020
Wen, Li-Lian | Li, Yaru | Zhu, Lizhong | Zhao, He-Ping
In this study, the YH consortium, an ethene-producing culture, was used to evaluate the effect of vitamin B₁₂ (VB₁₂) on trichloroethene (TCE) dechlorination by transferring the original TCE-reducing culture with or without adding exogenous VB₁₂. Ultra-high performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) was applied to detect the concentrations of VB₁₂ and its lower ligand 5,6-dimethylbenzimidazole (DMB) in the cultures. After three successive VB₁₂ starvation cycles, the dechlorination of TCE stopped mostly at cis-dichloroethene (cDCE), and no ethene was found; methane production increased significantly, and no VB₁₂ was detected. Results suggest that the co-cultured microbes may not be able to provide enough VB₁₂ as a cofactor for the growth of Dehalococcoides in the YH culture, possibly due to the competition for corrinoids between Dehalococcoides and methanogens. The relative abundances of 16 S rRNA gene of Dehalococcoides and reductive dehalogenase genes tceA or vcrA were lower in the cultures without VB₁₂ compared with the cultures with VB₁₂. VB₁₂ limitation changed the microbial community structures of the consortia. In the absence of VB₁₂, the microbial community shifted from dominance of Chloroflexi to Proteobacteria after three consecutive VB₁₂ starvation cycles, and the dechlorinating genus Dehalococcoides declined from 42.9% to 13.5%. In addition, Geobacter, Clostridium, and Desulfovibrio were also present in the cultures without VB₁₂. Furthermore, the abundance of archaea increased under VB₁₂ limited conditions. Methanobacterium and Methanosarcina were the predominant archaea in the culture without VB₁₂.
显示更多 [+] 显示较少 [-]Dechlorination of p,p′-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM
2012
Bao, Peng | Hu, Zheng-Yi | Wang, Xin-Jun | Chen, Jian | Ba, Yu-Xin | Hua, Jing | Zhu, Chun-You | Zhong, Min | Wu, Chun-Yan
A novel non-dsrAB (without dissimilatory sulfite reductase genes) sulfate-reducing bacterium (SRB) Clostridium sp. BXM was isolated from a paddy soil. Incubation experiments were then performed to investigate the formation of reduced sulfur compounds (RSC) by Clostridium sp. BXM, and RSC-induced dechlorination of p,p′-DDT in culture medium and soil solution. The RSCs produced were 5.8mM and 4.5mM in 28mM sulfate amended medium and soil solution respectively after 28-day cultivation. The p,p′-DDT dechlorination ratios were 74% and 45.8% for 5.8mM and 4.5mM RSCs respectively at 6h. The metabolites of p,p′-DDT found in the two reaction systems were identified as p,p′-DDD and p,p′-DDE. The dechlorination pathways of p,p′-DDT to p,p′-DDD and p,p′-DDE were proposed, based on mass balance and dechlorination time-courses. The results indicated that RSC-induced natural dechlorination may play an important role in the fate of organochlorines.
显示更多 [+] 显示较少 [-]Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: Efficiency and mechanisms
2022
Li, Miaomiao | Yao, Jun | Sunahara, Geoffrey | Hawari, Jalal | Duran, Robert | Liu, Jianli | Liu, Bang | Cao, Ying | Pang, Wancheng | Li, Hao | Li, Yangquan | Ruan, Zhiyong
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe²⁺ greatly increased As³⁺ immobilization compared to treatment without Fe²⁺, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As³⁺ immobilizing activity was related to the formation of arsenic sulfides (AsS, As₄S₄, and As₂S₃) and sorption/co-precipitation of pyrite (FeS₂). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As³⁺ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220–1181 mg As/kg or 63–222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
显示更多 [+] 显示较少 [-]Transformation of arsenic species by diverse endophytic bacteria of rice roots
2022
Chen, Chuan | Yang, Baoyun | Gao, Axiang | Yu, Yu | Zhao, Fang-Jie
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.
显示更多 [+] 显示较少 [-]Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil
2022
Xiao, Wendan | Ye, Xuezhu | Ye, Zhengqian | Zhang, Qi | Zhao, Shouping | Chen, De | Gao, Na | Huang, Miaojie
Combining biochar with irrigation management to alter the microbial community is a sustainable method for remediating soils contaminated by heavy metals. However, studies on how these treatments promote Cr(VI) reduction are limited, and the corresponding microbial mechanisms are unclear. Therefore, we conducted a pot experiment to explore the responses of soil microbial communities to combined biochar amendment and irrigation management strategies and their involvement in Cr transformation in paddy soils. Six treatments were established using varying concentrations of biochar (0, 1, and 2% [w/w]) combined with two irrigation management strategies (continuous flooding [CF] and dry–wet alternation [DWA]). The results showed that the combined biochar addition and irrigation management strategy significantly altered soil pH, redox potential, organic matter content, and Fe(II) and sulfide concentrations. In addition, the Cr(VI) concentration under CF irrigation management was conspicuously lower (48.2–54.4%) than that under DWA irrigation management. Biochar amendment also resulted in a substantial reduction (8.8–27.4%) in Cr(VI) concentration. Moreover, the changes in soil physicochemical properties remarkably affected the soil microbial community. The microbial diversity and abundance significantly increased with biochar amendment. Furthermore, the combined biochar amendment and CF strategy stimulated the growth of Geobacter- and Anaeromyxobacter-related Fe(III)-reducing bacteria, Gallionella-related Fe(II)-oxidizing bacteria, and Desulfovibro- and Clostridium-related sulfate-reducing bacteria, which simultaneously facilitated the generation of Fe(II) and sulfide, thereby enhancing Cr(VI) reduction. Consequently, our results suggest that the effectively increased abundance of Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria via combined CF irrigation management and biochar addition may be a key factor in reducing Cr(VI) in paddy soil. The keystone genera responsible for Cr(VI) reduction were Geobacter, Anaeromyxobacter, Gallionella, Desulfovibro, and Clostridium. This study provides novel insights into the coupling mechanism of the Fe/S/Cr transformation mediated by Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria.
显示更多 [+] 显示较少 [-]Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum
2020
Zhai, Weiwei | Dai, Yuxia | Zhao, Wenliang | Yuan, Honghong | Qiu, Dongsheng | Chen, Jingpan | Gustave, Williamson | Maguffin, Scott Charles | Chen, Zheng | Liu, Xingmei | Tang, Xianjin | Xu, Jianming
In situ immobilization of heavy metals in contaminated soils using industrial by-products is an attractive remediation technique. In this work, titanium gypsum (TG) was applied at two levels (TG-L: 0.15% and TG-H: 0.30%) to simultaneously reduce the uptake of cadmium (Cd), lead (Pb) and arsenic (As) in rice grown in heavy metal contaminated paddy soils. The results showed that the addition of TG significantly decreased the pH and dissolved organic carbon (DOC) in the bulk soil. TG addition significantly improved the rice plants growth and reduced the bioavailability of Cd, Pb and As. Particularly, bioavailable Cd, Pb and As decreased by 35.2%, 38.1% and 38.0% in TG-H treatment during the tillering stage, respectively. Moreover, TG application significantly reduced the accumulation of Cd, Pb and As in brown rice. Real-time PCR analysis demonstrated that the relative abundance of sulfate-reducing bacteria increased with the TG application, but not for the iron-reducing bacteria. In addition, 16S rRNA sequencing analysis revealed that the relative abundances of heavy metal-resistant bacteria such as Bacillus, Sulfuritalea, Clostridium, Sulfuricella, Geobacter, Nocardioides and Sulfuricurvum at the genus level significantly increased with the TG addition. In conclusion, the present study implied that TG is a potential and effective amendment to immobilize metal(loid)s in soil and thereby reduce the exposure risk of metal(loid)s associated with rice consumption.
显示更多 [+] 显示较少 [-]Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria
2020
Dai, Jun | Tang, Zhu | Jiang, Nan | Kopittke, Peter M. | Zhao, Fang-Jie | Wang, Peng
Rice (Oryza sativa) tends to accumulate elevated levels of arsenic (As) in grain, threatening food safety and human health. The rice rhizosphere has a micro-environment that differs markedly from the bulk soil. Yet, little is known about how this micro-environment influences the mobility of As in the rhizosphere. Using rhizoboxes with two rice cultivars (cv. Shenyou 957 and Yangdao 6) differing in their radial oxygen loss (ROL), we investigated the in situ transformation of As in the rhizosphere associated with changes in microbial communities and As-related functional genes. Contrary to expectation, dissolved (porewater) As concentrations within the rhizosphere increased by 1.3–2.4 fold compared to the bulk soil during the seedling stage, with the magnitude of this difference gradually decreasing over time. The increased As mobilization in the rhizosphere was associated with increased soluble Fe. This increasing trend was associated with the increased abundance of both Fe-reducing bacteria (FeRB) and As-related functional genes within the rhizosphere. Furthermore, bacterial 16S rRNA gene sequencing data showed that the abundances of Geobacter and Clostridium were 3.1 times and 12.4 times higher in the rhizosphere, respectively. The importance of FeRB was also suggested by the fact that dissolved As concentrations were highly correlated with dissolved Fe concentrations (r² = 0.83) and also with the relative abundance of genus Clostridium_sensu_stricto_10 (r² = 0.85). This study highlights that although the rice rhizosphere favors a more aerobic condition compared to the bulk soil, As is more mobilized in the rhizosphere, and that Geobacter and some species of Clostridium play a critical role in controlling As mobilization in the rhizosphere.
显示更多 [+] 显示较少 [-]Proteogenomics identification of TBBPA degraders in anaerobic bioreactor
2022
Macêdo, Williane Vieira | Poulsen, Jan Struckmann | Zaiat, Marcelo | Nielsen, Jeppe Lund
Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified ¹³C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.
显示更多 [+] 显示较少 [-]