细化搜索
结果 1-10 的 37
Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies
2022
Arias, Andrés H. | Alfonso, María B. | Girones, Lautaro | Piccolo, María C. | Marcovecchio, Jorge E.
Evidence shows that the majority of aquatic field microplastics (MPs) could be microfibers (MFs) which can be originated directly from massive sources such as textile production and shedding from garments, agricultural textiles and clothes washing. In addition, wear and tear of tyres (TRWPs) emerges as a stealthy major source of micro and nanoplastics, commonly under-sampled/detected in the field. In order to compile the current knowledge in regards to these two major MPs sources, concentrations of concern in aquatic environments, their distribution, bulk emission rates and water mitigation strategies were systematically reviewed. Most of the aquatic field studies presented MFs values above 50%. MPs concentrations varied from 0.3 to 8925 particles m⁻³ in lakes, from 0.69 to 8.7 × 10⁶ particles m⁻³ in streams and rivers, from 0.16 to 192000 particles m⁻³ estuaries, and from 0 to 4600 particles m⁻³ in the ocean. Textiles at every stage of production, use and disposal are the major source of synthetic MFs to water. Laundry estimates showed an averaged release up to 279972 tons year⁻¹ (high washing frequency) from which 123000 tons would annually flow through untreated effluents to rivers, streams, lakes or directly to the ocean. TRWPs in the aquatic environments showed concentrations up to 179 mg L⁻¹ (SPM) in runoff river sediments and up to 480 mg g⁻¹ in highway runoff sediments. Even though average TRWR emission is of 0.95 kg year⁻¹ per capita (10 nm- 500 μm) there is a general scarcity of information about their aquatic environmental levels probably due to no-availability or inadequate methods of detection. The revision of strategies to mitigate the delivering of MFs and TRWP into water streams illustrated the importance of domestic laundry retention devices, Waste Water Treatment Plants (WWTP) with at least a secondary treatment and stormwater and road-runoff collectors quality improvement devices.
显示更多 [+] 显示较少 [-]Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
显示更多 [+] 显示较少 [-]Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction
2022
Geyer, Roland | Gavigan, Jenna | Jackson, Alexis M. | Saccomanno, Vienna R. | Suh, Sangwon | Gleason, Mary G.
Synthetic microfibers have been identified as the most prevalent type of microplastic in samples from aquatic, atmospheric, and terrestrial environments across the globe. Apparel washing has shown to be a major source of microfiber pollution. We used California as a case study to estimate the magnitude and fate of microfiber emissions, and to evaluate potential mitigation approaches. First, we quantified synthetic microfiber emissions and fate from apparel washing in California by developing a material flow model which connects California-specific data on synthetic fiber consumption, apparel washing, microfiber generation, and wastewater and biosolid management practices. Next, we used the model to assess the effectiveness of different interventions to reduce microfiber emissions to natural environments. We estimate that in 2019 as much as 2.2 kilotons (kt) of synthetic microfibers were generated by apparel washing in California, a 26% increase since 2008. The majority entered terrestrial environments (1.6 kt), followed by landfills (0.4 kt), waterbodies (0.1 kt), and incineration (0.1 kt). California's wastewater treatment network was estimated to divert 95% of microfibers from waterbodies, mainly to terrestrial environments and primarily via land application of biosolids. Our analysis also reveals that application of biosolids on agricultural lands facilitates a directional flow of microfibers from higher-income urban counties to lower-income rural communities. Without interventions, annual synthetic microfiber emissions to California's natural environments are expected to increase by 17% to 2.1 kt by 2026. Further increasing the microfiber retention efficiency at the wastewater treatment plant would increase emissions to terrestrial environments, which suggests that microfibers should be removed before entering the wastewater system. In our model, full adoption of in-line filters in washing machines decreased annual synthetic microfiber emissions to natural environments by 79% to 0.5 kt and offered the largest reduction of all modeled scenarios.
显示更多 [+] 显示较少 [-]A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics
2018
shan, Jiajia | Zhao, Junbo | Liu, Lifen | Zhang, Yituo | Wang, Xue | Wu, Fengchang
Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1–5 mm and 0.5–1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1–5 mm and 0.5–1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1–5 mm and 0.5–1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%–99% for microplastics particle 1–5 mm and 0.5–1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly.
显示更多 [+] 显示较少 [-]Microplastics in sediments of the Changjiang Estuary, China
2016
Peng, Guyu | Zhu, Bangshang | Yang, Dongqi | Su, Lei | Shi, Huahong | Li, Daoji
Microplastics are plastics that measure less than 5 mm in diameter. They enter the marine environment as primary sources directly from industrial uses, as well as secondary sources resulting from the degradation of large plastic debris. To improve the knowledge of microplastic pollution in China, we investigated samples from 53 estuarine sediment locations collected with a box corer within the Changjiang Estuary. Microplastics (<5 mm) were extracted from sediments by density separation, after which they were observed under a microscope and categorized according to shape, color and size. Identification was carried out using Micro-Fourier-Transform Infrared Spectroscopy (μ-FT-IR).The abundance of microplastics in the Changjiang Estuary was mapped. The mean concentration was 121 ± 9 items per kg of dry weight, varying from 20 to 340 items per kg of dry weight. It was found that the concentration of microplastics was the highest on the southeast coast of Shanghai. The distribution pattern of microplastics may be affected by the Changjiang diluted water in summer. All of the microplastics collected were categorized according to shape, color and size. Among which fiber (93%), transparent (42%) and small microplastics (<1 mm) (58%) were the most abundant types. No clear correlation between microplastics and the finer sediment fraction was found. Rayon, polyester, and acrylic were the most abundant types of microplastics identified, indicating that the main source of microplastics in the Changjiang Estuary was from washing clothes (the primary source). It is possible to compare microplastic abundance in this study with the results of other related studies using the same quantification method. The identification of microplastics raises the awareness of microplastic pollution from drainage systems. The prevalence of microplastic pollution calls for monitoring microplastics at a national scale on a regular basis.
显示更多 [+] 显示较少 [-]Silver nanoparticle uptake in the human lung assessed through in-vitro and in-silico methods
2020
Jalink, Kathryn | Cheng, Sammi Sham Yin | Ben Ireland, S. | Louise Meunier, M.A.F.
Silver nanoparticles (AgNP) are commonly used in medical, cosmetics, clothing, and industrial applications for their antibacterial and catalytic properties. As AgNP become more prevalent, the doses to which humans are exposed may increase and pose health risks, particularly through incidental inhalation. This exposure was evaluated through in-vitro methods simulating lung fluids and lung epithelium, and through computational fluid dynamics (CFD) methods of AgNP transport. A high-dose scenario simulated a short-term inhalation of 10 μg AgNP/m³, based on an exposure limit recommended by the National Institute of Occupational Safety and Health for the case of a health-care worker who handles AgNP-infused wound dressings, and regularly wears AgNP-imbedded clothing. Bioaccessibility tests were followed by a Parallel Artificial Membrane Permeability Assay (PAMPA) and supported by CFD models of the lung alveoli, membrane, pores, and blood capillaries. Results indicate that such exposure produces an average and maximum AgNP flux of approximately 4.7 × 10⁻²¹ and 6.5 × 10⁻¹⁹ mol m⁻²·s⁻¹ through lung tissue, respectively, yielding a blood-silver accumulation of 0.46–64 mg per year, which may exceed the lowest adverse effect level of 25 mg for an adult male. Results from in-silico simulations were consistent with values estimated in vitro (within an order of magnitude), which suggest that CFD models may be used effectively to predict silver exposure from inhaled AgNP. Although the average short-term exposure concentrations are 3 orders of magnitude smaller than the reported threshold for mammalian cytotoxicity effects (observed at 5000 ppb), cumulative effects resulting from constant exposure to AgNP may pose risks to human health in the long-term, with predicted bioaccumulation reaching potential toxic effects after only five months of exposure, based on maximum flux.
显示更多 [+] 显示较少 [-]Temporal dynamic of anthropogenic fibers in a tropical river-estuarine system
2020
Strady, Emilie | Kieu-Le, Thuy-Chung | Gasperi, Johnny | Tassin, Bruno
Anthropogenic fibers, gathering synthetic fibers, artificial fibers and natural fibers are ubiquitous in the natural environment. Tremendous concentrations of anthropogenic fibers were previously measured in the tropical Saigon River (Vietnam), i.e. a river impacted by textile and apparel industries. In the present study, we want to examine the role of contrasted seasonal variation (e.g., dry and rainy seasons), via the rainfall and monthly water discharges, and of water's physico-chemical conditions on the concentrations of anthropogenic fibers in the surface water. The one year and half monthly survey evidenced that concentrations of anthropogenic fibers varied from 22 to 251 items L⁻¹ and their variations were not related to rainfall, water discharge or abiotic factors. However, their color and length distribution varied monthly suggesting variations in sources and sinks. Based on the 2017 survey, we estimated an annual emission of anthropogenic fibers from the river to the downstream coastal zone of 115–164 × 10¹² items yr⁻¹.
显示更多 [+] 显示较少 [-]Microplastics' emissions: Microfibers’ detachment from textile garments
2019
Belzagui, Francisco | Crespi, Martí | Alvarez, Antonio | Gutiérrez-Bouzán, Carmen | Vilaseca, Mercedes
Microplastics (synthetic polymers <5 mm) have been recently recognized as a big environmental concern, as their ubiquity is an undeniable fact. Their wide variety regarding shapes, sizes, and materials turn them into an intrinsically risky pollutant capable of causing several environmental impacts. Textile microfibers (MF) are a microplastic sub-group. These are mostly shed when a normal laundry of any garment takes place. Special attention has been put onto them, as high concentrations have been found in products for human consumption as shellfish and tap water. However, as there is no consensus on the methodologies to quantify and report the results of MFs detached from textile garments, the degree of similarity between published studies is very low. Hence, the aim of this research was to evaluate the microfibers’ detachment rates of finished garments and to provide a set of comparable units to report the results. These were found to range between 175 and 560 MF/g or 30000–465000 MF/m² of garment. In addition, there was a high correlation between the MF detachment and the textile article superficial density. Finally, our results were compared with a recent paper that estimated the annual mass flow of MFs to the oceans. This previous publication is 30 times higher when related to the mass but 40 times lower if related to the number of MFs.
显示更多 [+] 显示较少 [-]Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
2018
De Falco, Francesca | Gullo, Maria Pia | Gentile, Gennaro | Di Pace, Emilia | Cocca, Mariacristina | Gelabert, Laura | Brouta-Agnésa, Marolda | Rovira, Angels | Escudero, Rosa | Villalba, Raquel | Mossotti, Raffaella | Montarsolo, Alessio | Gavignano, Sara | Tonin, Claudio | Avella, Maurizio
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.
显示更多 [+] 显示较少 [-]Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana
2017
Bortey-Sam, Nesta | Ikenaka, Yoshinori | Akoto, Osei | Nakayama, Shouta M.M. | Asante, Kwadwo A. | Baidoo, Elvis | Obirikorang, Christian | Saengtienchai, Aksorn | Isoda, Norikazu | Nimako, Collins | Mizukawa, Hazuki | Ishizuka, Mayumi
Studies of polycyclic aromatic hydrocarbons (PAHs) and its metabolites in PM10, soils, rat livers and cattle urine in Kumasi, Ghana, revealed high concentrations and cancer potency. In addition, WHO and IARC have reported an increase in cancer incidence and respiratory diseases in Ghana. Human urine were therefore collected from urban and control sites to: assess the health effects associated with PAHs exposure using malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG); identify any association between OH-PAHs, MDA, 8-OHdG with age and sex; and determine the relationship between PAHs exposure and occurrence of respiratory diseases. From the results, urinary concentrations of the sum of OH-PAHs (∑OHPAHs) were significantly higher from urban sites compared to the control site. Geometric mean concentrations adjusted by specific gravity, GMSG, indicated 2-OHNaphthalene (2-OHNap) (6.01 ± 4.21 ng/mL) as the most abundant OH-PAH, and exposure could be through the use of naphthalene-containing-mothballs in drinking water purification, insect repellent, freshener in clothes and/or “treatment of various ailments”. The study revealed that exposure to naphthalene significantly increases the occurrence of persistent cough (OR = 2.68, CI: 1.43–5.05), persistent headache (OR = 1.82, CI: 1.02–3.26), tachycardia (OR = 3.36, CI: 1.39–8.10) and dyspnea (OR = 3.07, CI: 1.27–7.43) in Kumasi residents. Highest level of urinary 2-OHNap (224 ng/mL) was detected in a female, who reported symptoms of persistent cough, headache, tachycardia, nasal congestion and inflammation, all of which are symptoms of naphthalene exposure according to USEPA. The ∑OHPAHs, 2-OHNap, 2-3-OHFluorenes, and -OHPhenanthrenes showed a significantly positive correlation with MDA and 4-OHPhenanthrene with 8-OHdG, indicating possible lipid peroxidation/cell damage or degenerative disease in some participants. MDA and 8-OHdG were highest in age group 21–60. The present study showed a significant sex difference with higher levels of urinary OH-PAHs in females than males.
显示更多 [+] 显示较少 [-]