细化搜索
结果 1-3 的 3
Microplastics in livers of European anchovies (Engraulis encrasicolus, L.)
2017
Collard, France | Gilbert, Bernard | Compère, Philippe | Eppe, Gauthier | Das, Krishna | Jauniaux, Thierry | Parmentier, Eric
peer reviewed | Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field. The study focuses mainly on the European anchovy Engraulis encrasicolus but concerns also the European pilchard Sardina pilchardus and the Atlantic herring Clupea harengus. Two complementary methodologies were used to attest the occurrence of MPs in the hepatic tissue and to exclude contamination. 1) MPs were isolated by degradation of the hepatic tissue. 2) Cryosections were made on the livers and observed in polarized light microscopy. Both methods separately revealed that MPs, mainly polyethylene (PE), were translocated into the livers of the three clupeid species. In anchovy, 80 per cent of livers contained relatively large MPs that ranged from 124 μm to 438 μm, showing a high level of contamination. Two translocation pathways are hypothesized: (i) large particles found in the liver resulted from the agglomeration of smaller pieces, and/or (ii) they simply pass through the intestinal barrier. Further studies are however required to understand the exact process. © 2017 Elsevier Ltd
显示更多 [+] 显示较少 [-]Morphology of the filtration apparatus of three planktivorous fishes and relation with ingested anthropogenic particles
2017
Collard, France | Gilbert, Bernard | Eppe, Gauthier | Roos, Laetitia | Compère, Philippe | Das, Krishna | Parmentier, Eric | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège | AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
peer reviewed | Anthropogenic particles (APs), including microplastics, are ingested by a wide variety of marine organisms. Exposure of Clupeiformes (e.g. herrings, anchovies, sardines) is poorly studied despite their economic and ecological importance. This study aims to describe the morphology of the filtration apparatus of three wild-caught Clupeiformes (Sardina pilchardus, Clupea harengus and Engraulis encrasicolus) and to relate the results to ingested APs. Consequently, the species with the more efficient filtration apparatus will be more likely to ingest APs. We hypothesized that sardines were the most exposed species. The filtration area and particle retention threshold were determined in the three species, with sardines displaying the highest filtration area and the closest gill rakers. Sardines ingested more fibers and smaller fragments, confirming that it is the most efficient filtering species. These two results lead to the conclusion that, among the three studied, the sardine is the species most exposed to APs.
显示更多 [+] 显示较少 [-]Microplastics in livers of European anchovies (Engraulis encrasicolus, L.)
2017
Collard, France | Gilbert, Bernard | Compère, Philippe | Eppe, Gauthier | Dāsa, Kr̥shṇā | Jauniaux, Thierry | Parmentier, Eric
Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field. The study focuses mainly on the European anchovy Engraulis encrasicolus but concerns also the European pilchard Sardina pilchardus and the Atlantic herring Clupea harengus. Two complementary methodologies were used to attest the occurrence of MPs in the hepatic tissue and to exclude contamination. 1) MPs were isolated by degradation of the hepatic tissue. 2) Cryosections were made on the livers and observed in polarized light microscopy. Both methods separately revealed that MPs, mainly polyethylene (PE), were translocated into the livers of the three clupeid species. In anchovy, 80 per cent of livers contained relatively large MPs that ranged from 124 μm to 438 μm, showing a high level of contamination. Two translocation pathways are hypothesized: (i) large particles found in the liver resulted from the agglomeration of smaller pieces, and/or (ii) they simply pass through the intestinal barrier. Further studies are however required to understand the exact process.
显示更多 [+] 显示较少 [-]