细化搜索
结果 1-10 的 72
Current opinion: What is a nanoplastic?
2018
Gigault, Julien | Halle, Alexandra Ter | Baudrimont, Magalie | Pascal, Pierre-Yves | Gauffre, Fabienne | Phi, Thuy-Linh | El Hadri, Hind | Grassl, Bruno | Reynaud, Stéphanie | Géosciences Rennes (GR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Chimie des colloïdes, polymères & assemblages complexes (Softmat) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Adaptation aux milieux extrêmes ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) | Institut des Sciences Chimiques de Rennes (ISCR) ; Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | This work was supported by the French National Agency of Research (ANR-17-CE34-0008: PEPSEA) and the Interdisciplinary Mission of the French National Center for Scientific Research (CNRS). | ANR-17-CE34-0008,PEPSEA,Nanoparticules de plastiques dans l'environnement: source, impact et prédiction(2017)
International audience | With the large amount of attention being given to microplastics in the environment, several researchers have begun to consider the fragmentation of plastics down to lower scales (i.e., the sub-micrometer scale). The term “nanoplastics” is still under debate, and different studies have set the upper size limit at either 1000 nm or 100 nm. The aim of the present work is to propose a definition of nanoplastics, based on our recently published and unpublished research definition of nanoplastics. We define nanoplastics as particles unintentionally produced (i.e. from the degradation and the manufacturing of the plastic objects) and presenting a colloidal behavior, within the size range from 1 to 1000 nm.
显示更多 [+] 显示较少 [-]Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere
2020
Sun, Lijuan | Xue, Yong | Peng, Cheng | Xu, Chen | Shi, Jiyan
The biogeochemical cycling of sulfur in soil is closely associated with the mobility and bioavailability of heavy metals; however the influence of sulfur on the behavior of metal-based nanoparticles has not yet been studied. The influence of S fertilizer (S⁰ and Na₂SO₄) applied in paddy soils on CuO NPs behavior in soil pore water was explored in the present study. Synchrotron-based techniques were applied to investigate the migration and speciation transformation of CuO NPs in soil pore water colloids. The application of sulfur fertilizer increased the zeta potential of soil colloids from the rice rhizosphere region and reduced the size of the colloids. Sulfur fertilization decreased the concentration of Cu in soil pore water in the rice rhizosphere region. S⁰ fertilizer reduced the Cu concentration in soil colloids (by 55.8%–73.5%), while Na₂SO₄ increased the Cu concentration in soil colloids (by 173.8%–265.1%). Sulfur fertilization changed the spatial distribution of Fe³⁺ and Cu²⁺ in colloids, making these ions more likely to be aggregated on the edges of soil colloids. Speciation transformation of CuO NPs happened during the process of migration. The main Cu speciation in the soil colloids were CuO NPs, Cu-Cysteine, Cu₂S and Cu-Citrate. Sulfur fertilization increased the proportion of Cu₂S (by 40.5%) in soil pore water colloids from the rice rhizosphere region, while the proportion of CuO NPs was reduced (by 18.4%). Sulfur fertilization changed the morphology and elementary composition of colloids in soil pore water, thus influencing the migration of CuO NPs in the soil column through soil colloids.
显示更多 [+] 显示较少 [-]Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary
2020
Xie, Minwei | Wang, Wen-Xiong
Metal contamination in the Pearl River Estuary (PRE) is persistent-, yet a comprehensive understanding of distribution and behavior of metals in surface water of this large, multi-source estuary is still lacking. In the present study, water samples from 24 sites spanning the whole estuary during the dry and wet season were collected and fractioned. Trace metal concentrations in samples were then determined following a preconcentration technique using Nobias Chelate-PA1 resin. Distribution of trace metals exhibited variability along and across estuary, as a result of estuarine mixing, external metal loadings, addition and removal. Behavior of metals was contrasting between the dry and wet seasons, exhibiting metal-specific intercorrelations and dynamics. Colloidal metals (Mn, Ni and Cd) were primarily present in upper estuary and areas affected by external contaminant loading. Colloidal Cu was the only metal that was ubiquitous in the estuary in both seasons. It showed a high affinity for small-size organic colloids (likely fulvic acid) during the dry season. Overall, the present study demonstrated the multi-source character of the PRE and that the behavior of trace metals was controlled by the coupling of hydrologic and geochemical processes, with anthropogenic perturbations.
显示更多 [+] 显示较少 [-]Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media
2020
Liang, Yan | Zhou, Jini | Dong, Yawen | Klumpp, Erwin | Šimůnek, Jiří | Bradford, Scott A.
Although nanoscale surface roughness has been theoretically demonstrated to be a crucial factor in the interaction of colloids and surfaces, little experimental research has investigated the influence of roughness on colloid or silver nanoparticle (AgNP) retention and release in porous media. This study experimentally examined AgNP retention and release using two sands with very different surface roughness properties over a range of solution pH and/or ionic strength (IS). AgNP transport was greatly enhanced on the relatively smooth sand in comparison to the rougher sand, at higher pH, and lower IS and fitted model parameters showed systematic changes with these physicochemical factors. Complete release of the retained AgNPs was observed from the relatively smooth sand when the solution IS was decreased from 40 mM NaCl to deionized (DI) water and then the solution pH was increased from 6.5 to 10. Conversely, less than 40% of the retained AgNPs was released in similar processes from the rougher sand. These observations were explained by differences in the surface roughness of the two sands which altered the energy barrier height and the depth of the primary minimum with solution chemistry. Limited numbers of AgNPs apparently interacted in reversible, shallow primary minima on the smoother sand, which is consistent with the predicted influence of a small roughness fraction (e.g., pillar) on interaction energies. Conversely, larger numbers of AgNPs interacted in deeper primary minima on the rougher sand, which is consistent with the predicted influence at concave locations. These findings highlight the importance of surface roughness and indicate that variations in sand surface roughness can greatly change the sensitivity of nanoparticle transport to physicochemical factors such as IS and pH due to the alteration of interaction energy and thus can strongly influence nanoparticle mobility in the environment.
显示更多 [+] 显示较少 [-]Lead was mobilized in acid silty clay loam paddy soil with potassium dihydrogen phosphate (KDP) amendment
2019
Xu, Qiao | Ye, Binhui | Mou, Xiaoyu | Ye, Jien | Liu, Wenyu | Luo, Yating | Shi, Jiyan
The immobilization effectiveness between Pb and phosphorus in soil varies with soil types. To clarify the effect of phosphate on the availability of Pb in agricultural soil, a culture experiment with three types of paddy soil was performed with potassium dihydrogen phosphate (KDP) added. EDTA, DGT and in-situ solution extraction methods were used to represent different available Pb content. Results showed that the concentration of EDTA-Pb in HN soil was slightly elevated after exogenous KDP added. The supplement of 300 mg/kg KDP significantly increased the content of soluble Pb in both acid silty clay loam soil and neutral silty loam soil (increased by 104.65% and 65.12%, respectively). However, there was no significant influence of KDP on the concentration of DGT extracted Pb. XANES results showed that Pb(OH)2, PbHPO4, humic acid-Pb and GSH-Pb were the major speciation of Pb in soil colloids. The proportion of Pb(OH)2 and humic acid-bounded Pb in soil colloids were elevated after exogenous KDP added. Our results indicated that there was a mobilization effect of KDP on Pb by increasing the amount of colloidal Pb in soil solution, especially in acid silty clay loam paddy soil. Such colloid-facilitated transport might promote the uptake of Pb in rice and pose a potential threat to human health.
显示更多 [+] 显示较少 [-]Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand
2016
Cai, Li | Peng, Shengnan | Wu, Dan | Tong, Meiping
Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2–2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼1 μm) and Gram-positive Bacillus subtilis (∼2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport.
显示更多 [+] 显示较少 [-]Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique
2015
Tavakkoli, Ehsan | Juhasz, Albert | Donner, Erica | Lombi, Enzo
The association of polycyclic aromatic hydrocarbons (PAHs) with inorganic and organic colloids is an important factor influencing their bioavailability, mobility and degradation in the environment. Despite this, our understanding of the exchangeability and potential bioavailability of PAHs associated with colloids is limited. The objective of this study was to use phenanthrene as a model PAH compound and develop a technique using 14C phenanthrene to quantify the isotopically exchangeable and non-exchangeable forms of phenanthrene in filtered soil water or sodium tetraborate extracts. The study was also designed to investigate the exchangeability of colloidal phenanthrene as a function of particle size. Our findings suggest that the exchangeability of phenanthrene in sodium tetraborate is controlled by both inorganic and organic colloids, while in aqueous solutions inorganic colloids play the dominant role (even though coating of these by organic matter cannot be excluded). Filter pore size did not have a significant effect on phenanthrene exchangeability.
显示更多 [+] 显示较少 [-]Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: Transport experiments and modeling
2014
Vitorge, Elsa | Szenknect, Stéphanie | Martins, Jean M.-F. | Barthès, Véronique | Gaudet, Jean-Paul
Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity (110mAg(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled (110mAg(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.
显示更多 [+] 显示较少 [-]Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media
2009
Naturally occurring nanoparticles (NP) enhance the transport of hydrophobic organic contaminants (HOCs) in porous media. In addition, the debate on the environmental impact of engineered nanoparticles (ENP) has become increasingly important. HOC bind strongly to carbonaceous ENP. Thus, carbonaceous ENP may also act as carriers for contaminant transport and might be important when compared to existing transport processes. ENP bound transport is strongly linked to the sorption behavior, and other carbonaceous ENP-specific properties. In our analysis the HOC-ENP sorption mechanism, as well as ENP size and ENP residence time, was of major importance. Our results show that depending on ENP size, sorption kinetics and residence time in the system, the ENP bound transport can be estimated either as (1) negligible, (2) enhancing contaminant transport, or (3) should be assessed by reactive transport modeling. One major challenge to this field is the current lack of data for HOC-ENP desorption kinetics. Using nanoparticle size, residence time and sorption behavior, it was possible to estimate the relevance of engineered nanoparticle facilitated organic contaminant transport.
显示更多 [+] 显示较少 [-]Conditions affecting the release of thorium and uranium from the tailings of a niobium mine
2019
Li, Zhizhong | Hadioui, Madjid | Wilkinson, Kevin J.
Determinations of the mobility of metals from tailings is a critical part of any assessment of the environmental impacts of mining activities. The leaching of thorium and uranium from the tailings of different processing stages of a niobium mine was investigated for several pH, ionic strengths and concentrations of natural organic matter (NOM). The pH of the leaching solution did not have a noticeable impact on the extraction of Th, however, for pH values below 4, increased U mobilization was observed. Similarly, only a small fraction of Th (0.05%, ≤15 μg kg⁻¹) and U (1.22%, ≤6 μg kg⁻¹) were mobilized from the tailings in the presence of environmentally relevant concentrations of Ca, Mg or Na. However, in the presence of 10 mg L⁻¹ of fulvic acid, much higher concentrations of ca. 700 μg kg⁻¹ of Th and 35 μg kg⁻¹ of U could be extracted from the tailings. Generally, colloidal forms of Th and dissolved forms of U were mobilized from the tailings, however, in the presence of the fulvic acid, both dissolved and colloidal forms of the two actinides were observed. Single Particle ICP-MS was used to confirm the presence of Th (and U) containing colloids where significant numbers (up to 10⁷ mL⁻¹) of Th and U containing colloids were found, even in 0.2 μm filtered extracts. Although mass equivalent diameters in the range of 6–13 nm Th and 6–9 nm for U could be estimated (based upon the presence of an oxyhydroxide), most of the colloidal mass was attributed to larger (>200 nm) heterocomposite particles.
显示更多 [+] 显示较少 [-]