细化搜索
结果 1-10 的 16
Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing
2020
Kant, Yogesh | Shaik, Darga Saheb | Mitra, Debashis | Chandola, H.C. | Suresh Babu, S. | Chauhan, Prakash
Continuous measurements of Black Carbon (BC) aerosol mass concentrations were carried at Dehradun (30.33°N, 78.04°E, 700 m amsl), a semi-urban site in the foothills of north-westHimalayas, India during January 2011–December 2017. We reported both the BC seasonal variations as well as mass concentrations from fossil fuel combustion (BCff) and biomass burning (BCbb) sources. Annual mean BC exhibited a strong seasonal variability with maxima during winter (4.86 ± 0.78 μg m⁻³) followed by autumn (4.18 ± 0.54 μg m⁻³), spring (3.93 ± 0.75 μg m⁻³) and minima during summer (2.41 ± 0.66 μg m⁻³). Annual averaged BC mass concentrations were 3.85 ± 1.16 μg m⁻³ varying from 3.29 to 4.37 μg m⁻³ whereas BCff and BCbb ranged from 0.11 to 7.12 μg m⁻³ and 0.13–3.6 μg m⁻³. The percentage contributions from BCff and BCbb to total BC are 66% and 34% respectively, indicating relatively higher contribution from biomass burning as compared to other locations in India. This is explained using potential source contribution function (PSCF) and concentration weighted trajectories (CWT) analysis which reveals the potential sources of BC originating from the north-west and eastern parts of IGP and the western part of the Himalayas that are mostly crop residue burning and forest fire regions in India. The annual mean ARF at top-of-atmosphere (TOA), at surface (SUR), and within the atmosphere (ATM) were found to be −14.84 Wm⁻², −43.41 Wm⁻², and +28.57 Wm⁻² respectively. To understand the impact of columnar aerosol burden on ARF, the radiative forcing efficiency (ARFE) was estimated and averaged values were −31.81, −91.63 and 59.82 Wm⁻² τ⁻¹ for TOA, SUR and ATM respectively. The high ARFE within the atmosphere indicates the dominance of absorbing aerosol (BC and dust) over Northwest Himalayas.
显示更多 [+] 显示较少 [-]A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2
2020
Laskar, Amzad H. | Maurya, Abhayanand S. | Singh, Vishvendra | Gurjar, Bhola R. | Liang, Mao-Chang
Air quality in the megacity Delhi is affected not only by local emissions but also by pollutants from crop residue burning in the surrounding areas of the city, particularly the rice straw burning in the post monsoon season. As a major burning product, gaseous CO₂, which is rather inert in the polluted atmosphere, provides an alternative solution to characterize the impact of biomass burning from a new perspective that other common tracers such as particulate matters are limited because of their physical and chemical reactiveness. Here, we report conventional ([CO₂], δ¹³C, and δ¹⁸O) and unconventional (Δ¹⁷O) isotope data for CO₂ collected at Connaught Place (CP), a core area in the megacity Delhi, and two surrounding remote regions during a field campaign in October 18–20, 2017. We also measured the isotopic ratios near a rice straw burning site in Taiwan to constrain their end member isotopic compositions. Rice straw burning produces CO₂ with δ¹³C, δ¹⁸O, and Δ¹⁷O values of −29.02 ± 0.65, 19.63 ± 1.16, and 0.05 ± 0.02‰, respectively. The first two isotopic tracers are less distinguishable from those emitted by fossil fuel combustion but the last one is significantly different. We then utilize these end member isotopic ratios, with emphasis on Δ¹⁷O for the reason given above, for partitioning sources that affect the CO₂ level in Delhi. Anthropogenic fraction of CO₂ at CP ranges from 4 to 40%. Further analysis done by employing a three-component (background, rice straw burning, and fuel combustion) mixing model with constraints from the Δ¹⁷O values yields that rice straw burning contributes as much as ∼70% of the total anthropogenic CO₂, which is more than double of the fossil fuel contribution (∼30%), during the study days.
显示更多 [+] 显示较少 [-]Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin
2018
Shrestha, Narayan Kumar | Wang, Junye
An ecosystem in a cold climate river basin is vulnerable to the effects of climate change affecting permafrost thaw and glacier retreat. We currently lack sufficient data and information if and how hydrological processes such as glacier retreat, snowmelt and freezing-thawing affect sediment and nutrient runoff and transport, as well as N₂O emissions in cold climate river basins. As such, we have implemented well-established, semi-empirical equations of nitrification and denitrification within the Soil and Water Assessment Tool (SWAT), which correlate the emissions with water, sediment and nutrients. We have tested this implementation to simulate emission dynamics at three sites on the Canadian prairies. We then regionalized the optimized parameters to a SWAT model of the Athabasca River Basin (ARB), Canada, calibrated and validated for streamflow, sediment and water quality. In the base period (1990–2005), agricultural areas (2662 gN/ha/yr) constituted emission hot-spots. The spring season in agricultural areas and summer season in forest areas, constituted emission hot-moments. We found that warmer conditions (+13% to +106%) would have a greater influence on emissions than wetter conditions (−19% to +13%), and that the combined effect of wetter and warmer conditions would be more offsetting than synergetic. Our results imply that the spatiotemporal variability of N₂O emissions will depend strongly on soil water changes caused by permafrost thaw. Early snow freshet leads to spatial variability of soil erosion and nutrient runoff, as well as increases of emissions in winter and decreases in spring. Our simulations suggest crop residue management may reduce emissions by 34%, but with the mixed results reported in the literature and the soil and hydrology problems associated with stover removal more research is necessary. This modelling tool can be used to refine bottom-up emission estimations at river basin scale, test plausible management scenarios, and assess climate change impacts including climate feedback.
显示更多 [+] 显示较少 [-]Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution
2019
Yu, Mengmeng | Yuan, Xiaolei | He, Qingqing | Yu, Yuhan | Cao, Kai | Yang, Yong | Zhang, Wenting
China has performed crop residue burning (CRB) for a long time and has suffered from resultant environmental pollution. High temporal resolution has not been fully discussed in attempts to address the temporal and spatial impact of CRB in China on air quality. Our study used the MOD14A1 product of the MODerate resolution Imaging Spectrometer (MODIS) to extract the daily CRB for China during the period from 2014 to 2016, and the daily aerosol optical depth (AOD) provided by MODIS Collection 6 was obtained to simultaneously reflect the air pollution. First, the study area was classified into five subregions. A temporal analysis was conducted on the daily variation in the number of CRB events and the regional mean value of AOD, the spatial contribution ratio of CRB on aerosol pollution was then calculated, and finally, a temporal and spatial Pearson correlation was calculated to find the spatially varying relationship between CRB and aerosol. The results suggest the following: (1) CRB possesses seasonal characteristics that are associated with the harvest time or sowing time of major crops in the region. (2) The impact of CRB on aerosol was delayed by 1–6 days. (3) High contribution ratios (70%–90%) occurred in northeast China on a large scale; even when the impact of the CRB on aerosol pollution in the Huang-Huai-Hai river basin occurred on a large scale, the value was merely approximately 30%. Relatively low contributions of CRB have been found in other places, whereas the contribution of CRB was severe in some places with high-density populations. (4) Temporal-spatial correlation provided an accurate index to reflect the correlation of CRB and aerosol in a specific location, which suggests that, in places with large scale and dense CRB, CRB tends to have a high positive correlation with aerosol pollution for each day.
显示更多 [+] 显示较少 [-]The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles
2019
Phairuang, Worradorn | Suwattiga, Panwadee | Chetiyanukornkul, Thaneeya | Hongtieab, Surapa | Limpaseni, Wongpun | Ikemori, Fumikazu | Hata, Mitsuhiko | Furuuchi, Masami
Size-segregated ambient particles down to particles smaller than 0.1 μm (PM₀.₁) were collected during the year 2014–2015 using cascade air samplers with a PM₀.₁ stage, at two cities in Thailand, Bangkok and Chiang Mai. Their characteristics and seasonal behavior were evaluated based on the thermal/optical reflectance (IMPROVE_TOR) method. Diagnostic indices for their emission sources and the black carbon (BC) concentration were assessed using an aethalometer and related to the monthly emission inventory (EI) of particle-bound BC and organic carbon (OC) in order to investigate the contribution of agricultural activities and forest fires as well as agro-industries in Thailand. Monthly provincial EIs were evaluated based on the number of agricultural crops produced corresponding to field residue burning and the use of residues as fuel in agro-industries, and also on the number of hot spots from satellite images corresponding to the areas burned by forest fires. The ratio of char-EC/soot-EC describing the relative influence of biomass combustion to diesel emission was found to be in agreement with the EI of BC from biomass burning in the size range <1 μm. This was especially true for PM₀.₁, which usually tends to be indicative of diesel exhaust particles, and was shown to be very sensitive to the EI of biomass burning. In Chiang Mai, the northern part of Thailand, the forest fires located upwind of the monitoring site were found to be the largest contributor while the carbon behavior at the site in Bangkok was better accounted for by the EI of provinces in central Thailand including Bangkok and its surrounding provinces, where the burning of crop residues and the cultivation of sugarcane for sugar production are significant factors. This suggests that the influence of transportation of polluted air masses is important on a multi-provincial scale (100–200 km) in Thailand.
显示更多 [+] 显示较少 [-]Characterization of the chemical components and bioreactivity of fine particulate matter produced during crop-residue burning in China
2019
Chuang, Hsiao-Chi | Sun, Jian | Ni, Haiyan | Tian, Jie | Lui, Ka Hei | Han, Yongming | Cao, Junji | Huang, Ru-Jin | Shen, Zhenxing | Ho, Kin-Fai
Five types of crop residue (rice, wheat, corn, sorghum, and sugarcane) collected from different provinces in China were used to characterize the chemical components and bioreactivity properties of fine particulate matter (PM2.5) emissions during open-burning scenarios. Organic carbon (OC) and elemental carbon (EC) were the most abundant components, contributing 41.7%–54.9% of PM2.5 emissions. The OC/EC ratio ranged from 8.8 to 31.2, indicating that organic matter was the dominant component of emissions. Potassium and chloride were the most abundant components in the portion of PM2.5 composed of water-soluble ions. The coefficient of divergence ranged from 0.27 to 0.51 among various emissions profiles. All samples exposed to a high PM2.5 concentration (150 μg/mL) exhibited a significant reduction in cell viability (A549 lung alveolar epithelial cells) and increase in lactic dehydrogenase (LDH) and interleukin 6 levels compared with those exposed to 20 or 0 μg/mL. Higher bioreactivity (determined according to LDH and interleukin 6 level) was observed for the rice, wheat, and corn samples than for the sorghum straw samples. Pearson's correlation analysis suggested that OC, heavy metals (chromium, manganese, iron, nickel, copper, zinc, tin, and barium), and water-soluble ions (fluoride, calcium, and sulfate) are the components potentially associated with LDH production.
显示更多 [+] 显示较少 [-]Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016
2019
Yin, Shuai | Wang, Xiufeng | Zhang, Xirui | Guo, Meng | Miura, Moe | Xiao, Yi
In this study, various remote sensing data, modeling data and emission inventories were integrated to analyze the tempo-spatial distribution of biomass burning in mainland Southeast Asia and its effects on the local ambient air quality from 2001 to 2016. Land cover changes have been considered in dividing the biomass burning into four types: forest fires, shrubland fires, crop residue burning and other fires. The results show that the monthly average number of fire spots peaked at 34,512 in March and that the monthly variation followed a seasonal pattern, which was closely related to precipitation and farming activities. The four types of biomass burning fires presented different tempo-spatial distributions. Moreover, the monthly Aerosol Optical Depth (AOD), concentration of particulate matter with a diameter less than 2.5 μm (PM₂.₅) and carbon monoxide (CO) total column also peaked in March with values of 0.62, 45 μg/m³ and 3.25 × 10¹⁸ molecules/cm², respectively. There are significant correlations between the monthly means of AOD (r = 0.74, P < 0.001), PM₂.₅ concentration (r = 0.88, P < 0.001), and CO total column (r = 0.82, P < 0.001) and the number of fire spots in the fire season. We used Positive Matrix Factorization (PMF) model to resolve the sources of PM₂.₅ into 3 factors. The result indicated that the largest contribution (48%) to annual average concentration of PM₂.₅ was from Factor 1 (dominated by biomass burning), followed by 27% from Factor 3 (dominated by anthropogenic emission), and 25% from Factor 2 (long-range transport/local nature source). The annually anthropogenic emission of CO and PM₂.₅ from 2001 to 2012 and the monthly emission from the Emission Database for Global Atmosphere Research (EDGAR) were consistent with PMF analysis and further prove that biomass burning is the dominant cause of the variation in the local air quality in mainland Southeast Asia.
显示更多 [+] 显示较少 [-]Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain
2020
Wang, Jiayuan | Wang, Gehui | Wu, Can | Li, Jianjun | Cao, Cong | Li, Jin | Xie, Yuning | Ge, Shuangshuang | Chen, Jianmin | Zeng, Limin | Zhu, Tong | Zhang, Renjian | Kawamura, Kimitaka
This study reveals the impact of biomass burning (BB) on secondary organic aerosols (SOA) formation in the North China Plain (NCP). Filter samples were analyzed for secondary inorganic aerosols (SIA), oxalic acid (C2) and related aqueous-phase SOA compounds (aqSOA), stable carbon isotope composition of C2 (δ13C(C2)) and aerosol liquid water content (ALWC). Based on the PM2.5 loadings, BB tracer concentrations, wildfire spots and air-mass back trajectories, we distinguished two episodes from the whole campaign, Episode I and Episode II, which were characteristic of regional and local BB, respectively. The abundances of PM2.5 and organic matter in the two events were comparable, but concentrations and fractions of SIA, aqSOA during Episode I were much higher than those during Episode II, along with heavier δ13C(C2), suggesting an enhanced aqSOA formation in the earlier period. We found that the enhancement of aqSOA formation during Episode I was caused by an increased ALWC, which was mainly driven by SIA during the regional BB event. Our work showed that intensive burning of crop residue in East Asia can sharply enhance aqSOA production on a large scale, which may have a significant impact on the regional climate and human health.
显示更多 [+] 显示较少 [-]Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan: The roles of Siberian wildfires and of crop residue burning in China
2019
Zhu, Chunmao | Kanaya, Yūgō | Yoshikawa-Inoue, Hisayuki | Irino, Tomohisa | Seki, Osamu | Tohjima, Yasunori
A field study was conducted to clarify sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan. We quantified equivalent black carbon (eBC) particle mass and the absorption Ångström exponent (AAE), atmospheric CO and CH₄, in addition to levoglucosan in total suspended particles, a typical tracer of biomass burning. Sixteen high eBC events were identified attributable to either anthropogenic sources or biomass burning in Siberia/China. These events were often accompanied by increases of co-emitted gases such as CH₄ and CO. Specifically, we observed pollution events with elevated eBC, AAE, levoglucosan, and CH₄CO slope in late July 2014, which were attributed to forest fires in Siberia by reference to the FLEXPART model footprint and fire hotspots. In autumn, drastic increases of eBC, AAE, and levoglucosan were observed, accompanied by an eBC–CO slope of >15 ng m⁻³/ppb, resulting from long-range transport of emissions from extensive burning of crop residue on the Northeast China Plain. Other than the sources of fossil fuel combustion in China and forest fires in Siberia, we report for the first time that pollution events in northern Japan are caused by crop residue burning in China. This study elucidated valuable information that will improve understanding of the effects of biomass burning in East Asia on atmospheric carbonaceous components.
显示更多 [+] 显示较少 [-]Impact of long-term tillage management on utilization of microbial carbon sources in rhizosphere and non-rhizosphere soils under a double-cropping rice paddy field
2022
Cheng, Kaikai | Tang, Haiming | Li, Chao | Tang, Wenguang | Xiao, Xiaoping | Yi, Zhenxie
In order to reveal the mechanism of microbial carbon (C) sequestration in paddy soil under different tillage management and to provide an important theoretical basis for perfecting the mechanism of C sequestration in paddy soil. C can indicate changes of soil nutrient content and soil microbial community, but more research is needed to study how C sources utilization characteristics respond to different tillage management under a double-cropping rice (Oryza sativa L.) paddy field in southern China. Hence, the impact of long-term (2005–2018) tillage management on utilization of microbial carbon sources in rhizosphere and non-rhizosphere soils under a double-cropping rice paddy field was studied by using ¹⁸O–H₂O method in this study. The tillage treatments were included: (1) moldboard plow with all crop residue removed as a control (CT), (2) moldboard plow with all crop residue incorporated (CTS), (3) no-tillage with all crop residue retained on the soil surface (NTS), and (4) rotary tillage with all crop residue incorporated (RTS). The results indicated that Richness, Shannon, and McIntosh indices were increased by application of crop residue management, compared with treatment without crop residue, and soil microbial growth rate, soil microbial biomass C content, and soil microbial basal respiration with CT treatment were significantly lower (p < 0.05) than that of NTS, RTS, and CTS treatments. And the soil C utilization efficiency in rhizosphere soil with NTS, RTS, and CTS treatments was significantly lower (p < 0.05) than that of CT treatment. Compared with CT and CTS treatments, the metabolic capacity of soil microorganisms to exogenous C sources with NTS and RTS treatments was increased, and the different types of exogenous C sources were showed as following: complex compounds < carbohydrate < amino acid < carboxylic acids. The redundancy analysis results showed that utilization characteristics of soil microorganisms to exogenous C sources were significantly changed under tillage and crop residue incorporated conditions. Hence, this result indicated that characteristics of soil C sources utilization were significantly increased combined applied with tillage and crop residue incorporated management.
显示更多 [+] 显示较少 [-]