细化搜索
结果 1-10 的 467
Influence de la pollution atmospherique fluoree sur la vegetation de la region d' Annaba (Algerie).
1986
Semadi A. | de Cormis L.
Utilisation de la teledetection pour l' etude des maladies et de l' etat hydrique des forets et cultures.
1984
Andrieu B.
Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria 全文
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria 全文
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
PR | IFPRI3; ISI; CRP3.2; 4 Transforming Agricultural and Rural Economies | Development Strategies and Governance (DSG); Transformation Strategies | CGIAR Research Program on Maize (MAIZE)
显示更多 [+] 显示较少 [-]Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria 全文
2023
Ogunniyi, A.I. | Omotayo, A.O. | Olagunju, K.O. | Motunrayo, O. | Awotide, B.A. | Mavrotas, G. | Aremu, A.O.
One of the most serious challenges threatening agricultural sustainability in Nigeria is land degradation. Although this issue has received little attention, soil and water conservation practices have been identified as a possible pathway out of the potential problems posed by land degradation. Therefore, the central research question that this paper tries to address is the following: Do adoption of soil and water conservation (SWC) practices affect crop productivity and household welfare? This paper uses data collected by the International Institute of Tropical Agriculture (IITA) from maize farmers in rural Nigeria. We usedemploy the propensity score matching (PSM), inverse probability weighting adjusted regression model (IPWRA) approach, and the linear regression with endogenous treatment effect (LRETE) model to incorporate the typologies of SWC practices, and tested how the model affects crop productivity and household welfare. Additionally, multinomial logit was used to estimate the factors influencing the decision to adopt single and multiple SWC practices. The estimates show that education, age of the household head, access to credit, experience of drought, soil fertility, and occupational stress contribute to the decision to adopt SWC practices. The casual effect estimates reveal that both single and multiple adoptions of SWC practices had a positive and significant relationship with the crop productivity and welfare of the adopters. The results show that the adoption of combined SWC practices has a higher impact on crop productivity and welfare than single SWC practices. For instance, the adoption of a combination of three SWC practices was found to increase crop productivity and household welfare by 27.55% and 38.23%, respectively versus 13.91% and 15.11% in the case of single SWC practices. The study suggests that profile-raising agenda and efforts that focus on promoting the adoption of combination of SWC practices should be designed and implemented to enhance crop productivity and hence the welfare of the maize farming households in rural Nigeria.
显示更多 [+] 显示较少 [-]Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications 全文
2020
Cao, Duantao | Wu, Ruilin | Dong, Suxia | Wang, Feiyan | Ju, Chao | Yu, Sumei | Xu, Shiji | Fang, Hua | Yu, Yunlong
Aspergillus fumigatus is the primary agent of invasive aspergillosis (IA) causing high morbidity and mortality in immunocompromised patients. Triazole resistance in A. fumigatus and its sources have gained wide attention. For several years, environmental fungicides use has been proposed as the major cause for triazole resistance in A. fumigatus. However, there are few studies on azole-resistant A. fumigatus (ARAF) selected by triazole fungicides in agricultural systems. We studied the possible emergence of ARAF in the field after exposure to triazole fungicide tebuconazole. Our results showed that exposure to tebuconazole in soil selects for resistance to triazoles in A. fumigatus. The probability of ARAF developing in soils depends upon the concentrations of tebuconazole after application. We suggest that tebuconazole applications should be minimized to reduce selective pressure for the generation of ARAFs.
显示更多 [+] 显示较少 [-]Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils 全文
2020
Feng, Jiayin | Shentu, Jue | Zhu, Yanjie | Tang, Caixian | He, Yan | Xu, Jianming
Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils. Results showed that lindane pollution dramatically altered the microbial structure in the rhizosphere soil of maize but had less influence on the microbial composition in flooded treatments regardless of rice growth, when the reductive dechlorination of lindane was actively coupled with natural redox processes under anaerobic conditions. After 30 days of plant growth, lindane residues dissipated much faster in anaerobic than in aerobic environments, with only 1.08 mg kg⁻¹ lindane remaining in flooded control compared to 12.79 mg kg⁻¹ in dry control soils. Compared to the corresponding unplanted control, maize growth significantly increased, but rice growth slightly decreased the dissipation of lindane. Our study suggests that opposite impacts would lead to the self-purification of polluted soils during the growth of xerophytic maize and hygrocolous rice. This was attributed to the contrasting belowground micro-ecological processes regarding protection of root tissues and thereby assembly of rhizosphere microbiomes shaped by the xerophytic and hygrocolous crops under different water managements, in response to lindane pollution.
显示更多 [+] 显示较少 [-]Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil 全文
2020
Egodawatta, Lakmini P. | Holland, Aleicia | Koppel, Darren | Jolley, Dianne F.
Antimony (Sb) is an emerging contaminant and until recently it was assumed to behave in a similar way to arsenic (As). Arsenic and Sb often co-occur in contaminated sites, yet most investigations consider their toxicity to plants singly. More research is needed to understand the interactions between As and Sb in soils and plants. This study investigated the interactive effect of As and Sb in terms of soil bioavailability, plant toxicity and bioaccumulation on the commercially important agricultural plant, water spinach (Ipomoea aquatica) using a pot experiment. Plants were exposed to As and Sb individually (As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎, Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎) and as a mixture (As + Sb ₍cₒₘbᵢₙₑd₎) at different concentrations. Plant growth was measured using shoot and root dry mass, length and chlorophyll a content of leaves. At the end of the bioassay, bioavailable metalloids were extracted from the soil as per a sequential extraction procedure (SEP) and plant tissue was analysed for metalloid content. For As, there were no differences observed between the bioavailability of As in the As + Sb ₍cₒₘbᵢₙₑd₎ and As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatments. For Sb, no increase in bioavailability was observed with co-contamination compared to single-Sb exposures for most concentrations except at 1250 mg/kg. Single-Sb was not toxic to I. aquatica shoot dry mass and length, but there was greater shoot Sb accumulation in the As + Sb ₍cₒₘbᵢₙₑd₎ than the Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatment. In contrast, single-As was toxic to I. aquatica growth. When As and Sb were present together in the soil, there was a synergistic toxicity to shoot dry mass (EC₅₀ Toxic Unit (TU) was less than 1) and additive toxicity (EC₅₀ equal to 1 TU) to shoot length. This work shows that the co-occurrence of As and Sb in soil increases Sb bioavailability and can cause synergistic toxicity to an important agricultural crop.
显示更多 [+] 显示较少 [-]Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films 全文
2020
Ren, Suyu | Wang, Yi | Cui, Ying | Wang, Yan | Wang, Xiaochun | Chen, Jingwen | Tan, Feng
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10−6 s−1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
显示更多 [+] 显示较少 [-]Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants 全文
2019
Song, Chun | Ye, Fang | Zhang, Huiling | Hong, Jie | Hua, Chenyu | Wang, Bin | Chen, Yanshan | Ji, Rong | Zhao, Lijuan
Agricultural soil is one of the main sink for both heavy metals and nanomaterials (NMs). Whether NMs can impact heavy metals uptake or bioaccumulation in plants is unknown. Here, cucumber plants were cultivated in a multi-heavy metals contaminated soil amended with four types of NMs (SiO2, TiO2, ZnS and MoS2) separately for four weeks. Physiological and biochemical parameters were determined to investigate the impact of NMs on plant growth. Inductively coupled plasma mass spectrometry was employed to determine the metal content in plants. Results showed that none of the tested NMs impacted plants biomass, but all the NMs showed different degrees of reduction in heavy metals bioaccumulation in plant roots, stems and leaves. However, four NMs showed different degrees of reduction in macro and micro nutrients uptake. MoS2 decreased the bioaccumulation of heavy metals (As, Cd, Cr, Cu, Ni, Al, Ti and Pb) for 36.4–60.6% and nutrients (Mg, Fe, K, Si and Mn) for 40.1%–50.1% in roots. Exposure to MoS2 NMs also significantly increased 23.4% of Si in leaves, 205.6% and 83.9% of Mo in roots and stems, respectively. In general, the results of this study showed promising potential for NMs to reduce uptake of heavy metals in crop plants, especially MoS2 NMs. However, the negative impacts of perturbing nutrients uptake should be paid attention as well.
显示更多 [+] 显示较少 [-]Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress 全文
2019
Iftikhar, Azka | Ali, Shafaqat | Yasmeen, Tahira | Arif, Muhammad Saleem | Zubair, Muhammad | Rizwan, Muhammad | Alhaithloul, Haifa Abdulaziz S. | Alayafi, Aisha A.M. | Soliman, Mona H.
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
显示更多 [+] 显示较少 [-]