细化搜索
结果 1-10 的 40
The experimental phytotoxicology of germanium in relation to silicon.
1990
Puerner N.J. | Siegel S.M. | Siegel B.Z.
Soil type and growing conditions influence uptake and translocation of organochlorine (chlordecone) by cucurbitaceae species
2014
Clostre F. | Letourmy P. | Turpin B. | Carles C. | Lesueur Jannoyer M.
Chlordecone (CLD), an organochlorine insecticide, and other persistent organic pollutants continue to contaminate the environment worldwide and have adverse effects on human health through food exposure. Cucurbitaceae take up weathered hydrophobic pollutants from the soil and translocate them to their shoots. As Cucurbitaceae are an important part of the diet in the French West Indies, they are among the main contributors to total dietary intake of CLD. We analyzed the contamination by CLDs (CLD and 5b-hydroCLD) of four cucurbits grown in the field and/or in the greenhouse. Different physiological (crop species) and environmental (soil type, growth conditions) variables were shown to influence uptake of the pollutant from the soil by the crop. Cucurbita species (zucchini and pumpkin) were more contaminated than Cucumis sativus (cucumber), and Sechium edule (christophine or chayote) translocated CLDs to fruits very poorly compared with cucumber and pumpkin. Greenhouse conditions and non-allophanic (nitisols and ferralsols) soils favored plant contamination more than field conditions and allophanic soils (andosols). (Résumé d'auteur)
显示更多 [+] 显示较少 [-]Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil
2021
Ahmed, Bilal | Rizvi, Asfa | Syed, Asad | Jailani, Afreen | Elgorban, Abdallah M. | Khan, Mohammad Saghir | AL-Shwaiman, Hind A. | Lee, Jintae
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al₂O₃, TiO₂; 3.9–34 nm) and their corresponding metal oxide bulk particles (BPs; 144–586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn²⁺, Cu²⁺, and Al³⁺). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn²⁺, (ii) CuO-NPs > CuO-BPs > Cu²⁺, (iii) Al³⁺> Al₂O₃-NPs > Al₂O₃-BPs and (iv) TiO₂-NPs > TiO₂-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg⁻¹ increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu²⁺ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1–4 g kg⁻¹ further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
显示更多 [+] 显示较少 [-]Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis
2019
McGinnis, Michelle | Sun, Chengliang | Dudley, Stacia | Gan, Jay
Treated wastewater is increasingly used to meet agriculture's water needs; however, treated wastewater contains numerous contaminants of emerging concern (CECs). With exposure and uptake of CECs, phytotoxicity and health of crop plants is of concern, but is poorly understood. This study evaluated the effect of low-dose, chronic exposure to a mixture of 10 CECs, including 4 antibiotics, 3 anti-inflammatory drugs, 1 antiepileptic, 1 beta-blocker, and 1 antimicrobial, on lettuce (Lactuca sativa) and cucumber (Cucumis sativa L.) plants. The CEC mixture was added in nutrient media at 1 to 20X of their typical levels in treated wastewater effluents. Biological endpoints including germination, growth, phytohormone homeostasis, and CEC bioaccumulation were determined. Exposure to the CEC mixture did not affect the germination rate of lettuce seeds, but stimulated root elongation and increased the root-to-shoot biomass ratio during a 7 d cultivation. A dose-dependent decrease in biomass was observed in cucumber seedling after a 30 d exposure, with the highest rate CEC treatment resulting in decreases of 51.2 ± 20.9, 26.3 ± 34.1, and 33.2 ± 41.7% in the below-ground, above-ground, and total biomass, respectively. Levels of abscisic acid were significantly elevated (p < 0.05) in the leaves, but decreased (p < 0.05) in the roots. The dose-response of auxin was characterized by a hormesis effect. A significant 6-fold increase in the stem auxin level was observed at the 1X CEC rate, followed by a decrease to 2-fold the control at the 20X rate. Leaf auxin concentrations also significantly increased at the 1X CEC rate to 16-fold, followed by a decrease at the highest CEC rate. The results of this study suggeste that chronic exposure to low levels of CEC mixtures may compromise the fitness of plants, and the impairments are underlined by alterations in hormone balances.
显示更多 [+] 显示较少 [-]24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L
2017
Ahammed, Golam Jalal | He, Bei-Bei | Qian, Xiang-Jie | Zhou, Yan-Hong | Shi, Kai | Zhou, Jie | Yu, Jing-Quan | Xia, Xiao-Jian
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
显示更多 [+] 显示较少 [-]Potential toxicity of improperly discarded exhausted photovoltaic cells
2016
Motta, C.M. | Cerciello, R. | De Bonis, S. | Mazzella, V. | Cirino, P. | Panzuto, R. | Ciaravolo, M. | Simoniello, P. | Toscanesi, M. | Trifuoggi, M. | Avallone, B.
Low tech photovoltaic panels (PVPs) installed in the early ’80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.
显示更多 [+] 显示较少 [-]Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers
2009
Hilber, Isabel | Wyss, Gabriela S. | Mäder, Paul | Bucheli, Thomas D. | Meier, Isabel | Vogt, Lea | Schulin, R (Rainer)
Activated charcoal (AC) amendments have been suggested as a promising, cost-effective method to immobilize organic contaminants in soil. We performed pot experiments over two years with cucumber (Cucumis sativusL.) grown in agricultural soil with 0.07 mg kg⁻¹ of weathered dieldrin and 0, 200, 400, and 800 mg AC per kg soil. Dieldrin fresh weight concentrations in cucumber fruits were significantly reduced from 0.012 to an average of 0.004 mg kg⁻¹, and total uptake from 2 to 1 μg in the 800 mg kg⁻¹ AC treatment compared to the untreated soil. The treatment effects differed considerably between the two years, due to different meteorological conditions. AC soil treatments did neither affect the availability of nutrients to the cucumber plants nor their yield (total fruit wet weight per pot). Thus, some important prerequisites for the successful application of AC amendments to immobilize organic pollutants in agricultural soils can be considered fulfilled. The addition of activated charcoal to soil reduced dieldrin residues in cucumbers and did not affect nutrients availability.
显示更多 [+] 显示较少 [-]Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth
2007
Lin, D. | Xing, B.
Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. Engineered nanoparticles can inhibit the seed germination and root growth.
显示更多 [+] 显示较少 [-]Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability
2020
Li, Yunyi | Tian, Xiaoyu | Liang, Jialiang | Chen, Xinlei | Ye, Jiangyu | Liu, Yangsheng | Liu, Yuanyuan | Wei, Yunmei
A large amounts of arable land is facing a high risk of hexavalent chromium (Cr(VI)) pollution, which requires remediation using a low toxic agent. In this study, the remediation effect of amorphous iron pyrite (FeS₂₍ₐₘ₎) on Cr(VI) in Cr(VI)-contaminated soil was evaluated by systematically analyzing the variation of the leachability, bioaccessibility, phytotoxicity, and long-term stability of the remediated soil. The effectiveness of FeS₂₍ₐₘ₎ on the leachability was assessed by alkaline digestion and the toxicity characteristic leaching procedure (TCLP); the effect on the bioaccessibility was evaluated via the physiologically based extraction test (PBET) and the Tessier sequential extraction; the effect on the phytotoxicity was assessed via phytotoxicity bioassay (seed germination experiments) based on rape (Brassica napus L.) and cucumber (Cucumis Sativus L.), and the long-term stability of the Cr(VI)-remediated soil was appraised using column tests with groundwater and acid rain as the influents. The results show that FeS₂₍ₐₘ₎, with a stoichiometry of 4× exhibited a high efficiency in the remediation of Cr(VI) and decreased its leachability and bioaccessibility during the 30-day remediation period. In addition, seed germination rate, accumulation and translocation of Cr, and root and shoot elongation of rape and cucumber of remediated soil are not significantly different from those of clean soil, illustrating that FeS₂₍ₐₘ₎ is suitable for remediating Cr(VI) contaminated arable soil. The stabilization of Cr(VI) in contaminated soil using FeS₂₍ₐₘ₎ was maintained for 1575 days. The long-term effectiveness was further confirmed by the increasing amount of free Fe and Mn in the effluent and the decreasing redox potential. In summary, FeS₂₍ₐₘ₎ has an excellent efficiency for the remediation of Cr(VI), demonstrating it is a very promising alternative for use in the contaminated arable soil.
显示更多 [+] 显示较少 [-]Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber
2020
Ahammed, Golam Jalal | Wang, Yaqi | Mao, Qi | Wu, Meijuan | Yan, Yaru | Ren, Jingjing | Wang, Xiaojuan | Liu, Airong | Chen, Shuangchen
Bisphenol A (BPA) is an emerging organic pollutant, widely distributed in environment. Plants can uptake and metabolize BPA, but BPA accumulation induces phytotoxicity. In this study, we administered dopamine, a kind of catecholamines with strong antioxidative potential, to unveil its role in cucumber tolerance to BPA stress. The results showed that exposure to BPA (20 mg L⁻¹) for 21 days significantly reduced growth and biomass accumulation in cucumber seedlings as revealed by decreased lengths and dry weights of shoots and roots. While BPA exposure decreased the chlorophyll content, cell viability and root activity, it remarkably increased reactive oxygen species (ROS) accumulation, electrolyte leakage and malondialdehyde (MDA) content, suggesting that BPA induced oxidative stress in cucumber. However, exogenous dopamine application significantly improved the photosynthetic pigment content, root cell viability, growth and biomass accumulation, and decreased the ROS and MDA levels by increasing the activity of antioxidant enzymes under BPA stress. Further analysis revealed that dopamine application significantly increased the glutathione content and the transcripts and activity of glutathione S-transferase under co-administration of dopamine and BPA compared with only BPA treatment. Moreover, dopamine decreased the BPA content in both leaves and roots, suggesting that dopamine promoted BPA metabolism by enhancing the glutathione-dependent detoxification. Our results show that dopamine has a positive role against BPA phytotoxicity and it may reduce the risks-associated with the dietary intake of BPA through consumption of vegetables.
显示更多 [+] 显示较少 [-]