细化搜索
结果 1-10 的 257
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
显示更多 [+] 显示较少 [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
显示更多 [+] 显示较少 [-]Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars
2021
Cheng, Yiran | Yang, Tian | Xiang, Wenhui | Li, Siyu | Fan, Xing | Sha, Lina | Kang, Houyang | Wu, Dandan | Zhang, Haiqin | Zeng, Jian | Zhou, Yonghong | Wang, Yi
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH₄⁺-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH₄⁺-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH₄⁺-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH₄⁺-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH₄⁺-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH₄⁺-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
显示更多 [+] 显示较少 [-]Effect of soil cadmium on root organic acid secretion by forage crops
2021
Ubeynarayana, Nilusha | Jeyakumar, Paramsothy | Bishop, Peter | Pereira, Roberto Calvelo | Anderson, Christopher W.N.
The two forage species used in New Zealand pastoral agricultural systems, chicory (Cichorium intybus) and plantain (Plantago lanceolata) show differential ability to absorb and translocate cadmium (Cd) from roots to shoots. Chicory can accumulate Cd from even low Cd soils to levels that might exceed regulatory guidelines for Cd in fodder crops and food. Chicory and plantain were grown in soil-filled rhizocolumns under increasing Cd levels (0 (Control), 0.4, 0.8 and 1.6 mg Cd/kg soil) for 60 days and showed variable secretion of oxalic, fumaric, malic and acetic acids as a function of Cd treatment. Plant roots secrete such Low Molecular Weight Organic Acids into the rhizosphere soil, which can influence Cd uptake. Chicory showed significantly (P < 0.05) lower secretion of fumaric acid, and higher secretion of acetic acid than plantain at all Cd treatments. We propose that the significant secretion differences between the two species can explain the significantly (P < 0.05) higher shoot Cd concentration in chicory for all Cd treatments. Understanding the mechanism for increased uptake in chicory may lead to breeding or genetic modification which yield low Cd uptake cultivars needed to mitigate the risk of Cd accumulation in pastoral agricultural food chains from this increasingly important fodder crop.
显示更多 [+] 显示较少 [-]Worldwide cadmium accumulation in soybean grains and feasibility of food production on contaminated calcareous soils
2021
Zhang, Sha | Song, Jing | Wu, Longhua | Chen, Zheng
Elevated toxins in soybeans extensively threaten Asian residents and over one billion vegetarians worldwide. An integrated dataset of toxic trace metal(loid)s especially cadmium (Cd) analysis in soybean grain samples (n = 5217) from 12 countries/regions of origin was compiled for risk analysis. Worldwide grain Cd averaged 0.093 mg kg⁻¹, but mean values varied 16-fold between regions, with South China (0.32 mg kg⁻¹) > Argentina (0.15 mg kg⁻¹) = German (0.13 mg kg⁻¹) > Japan (0.11 mg kg⁻¹) > the United States (0.064 mg kg⁻¹) > Central-North China (0.020–0.60 mg kg⁻¹) ≥ Iran (0.042 mg kg⁻¹) = Brazil (0.023 mg kg⁻¹) = South Korea (0.020 mg kg⁻¹). Regression analysis suggested widespread contamination and acidic soil features significantly contributed the elevated food Cd contamination worldwide. Arsenic (As) and lead (Pb) are also of concern because excessive levels were often observed in grains. Given that soil Cd bioavailability is generally low in alkaline pH ranges, the feasibility of producing safe food from contaminated land was investigated by greenhouse experiments with one low-Cd soybean cultivar grown on 20 contaminated calcareous soils. Equilibrium-based approaches i.e., 0.01 M CaCl₂ and in-situ porewater extractions, and diffusion-based diffusive gradients in thin-films technique were used to determine the plant-available fractions of soil metal(loid)s to explain the bioaccumulation variation. The results suggested that soybean grains bioaccumulated mean 0.76 mg Cd kg⁻¹, ranging from 0.16 to 2.1 mg kg⁻¹, whereas As and Pb bioaccumulation was low. Cadmium accumulation was closely correlated with plant-available Cd fractions especially the 0.01 M CaCl₂-extractable Cd, but negatively correlated with soil pH. Even in the alkaline pH range, a slight decrease of soil pH would increase grain Cd significantly. Study region and those arable lands that have similar soil conditions are not recommended for growing soybean unless novel remediation strategies are developed.
显示更多 [+] 显示较少 [-]Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars
2020
Zhou, Jun | Zhang, Chen | Du, Buyun | Cui, Hongbiao | Fan, Xingjun | Zhou, Dongmei | Zhou, Jing
Cadmium (Cd) contamination is a big challenge for managing food supply and safety around the world. Reduction of the bioaccumulation of cadmium (Cd) in wheat is an important way to minimize Cd hazards to human health. This study compared and highlighted the effects of soil and foliar applications of Zn on Cd accumulation and toxicity in cultivars with high Cd accumulation (high-Cd wheat) and low Cd accumulation (low-Cd wheat). Both foliar and soil Zn applications provided effective strategies for reducing wheat grain Cd concentrations in the high-Cd wheat by 26–49% and 25–52%, respectively, and these also significantly reduced the concentrations in wheat stems and leaves. Foliar and soil Zn applications significantly reduced Cd in leaves and stems of the low-Cd wheat but had no effects on grain Cd. Both soil and foliar Zn applications significantly alleviated Cd toxicity by regulation of Cd transport genes, as reflected by the increased grain yield and antioxidant enzyme activity in the wheat tissues. Gene expression in response to zinc application differed in the two wheat cultivars. Down-regulation of the influx transporter (TaNramp5) and upregulation of the efflux transporters (TaTM20 and TaHMA3) in the high-Cd wheat may have contributed to the Zn-dependent Cd alleviation and enhanced its tolerance to Cd toxicity. Additionally, foliar Zn applications down-regulated the leaf TaHMA2 expression that reduced root Cd translocation to shoots, while soil Zn applications down-regulated the root TaLCT1 expression, which contributed to the reduction of root Cd concentrations. Soil (99 kg ZnSO₄·7H₂O ha⁻¹) and foliar (0.36 kg ZnSO₄·7H₂O ha⁻¹) Zn applications can effectively decrease the Cd in grains and guarantee food safety and yield, simultaneously. The presented results provide a new insight into the mechanisms of, and strategies for, using Zn for the Cd reduction in wheat.
显示更多 [+] 显示较少 [-]Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships
2020
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Calatayud, Vicent
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m−2 s−1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
显示更多 [+] 显示较少 [-]Transportation and degradation of decabrominated diphenyl ether in sequential anoxic and oxic crop rotation
2020
Zhao, Pengfei | Wang, Wei | Whalen, Joann K. | Zhang, Subin | Ye, Qingfu
This work evaluated the debromination and uptake of ¹⁴C-labeled BDE-209 in rice cultivars grown in anoxic soil for 120 days (d) followed by cultivation of vegetables (peanut, eggplant and pepper) in oxic soil (120 d). Degradation of BDE-209 to lower polybrominated diphenyl ethers (PBDEs) occurred in cultivated soils, and more metabolites were released in oxic soil than in anoxic soil. The crop rotation from anoxic to oxic greatly enhanced the dissipation of BDE-209 in the soil (P < 0.05), in which the dissipation in anoxic soil planted with Huanghuazhan (HHZ, indica) and Yudao 1 (YD1, indica) were 6.8% and 2.4%, respectively, while in oxic soil with peanut and pepper were increased to 25.8% and 21.7%, respectively. The crop rotation also enhanced the degradation of BDE-209 in the soil, the recovered BDE-209 in soil after 120 d anoxic incubation with YD1 was 81.1%, but it decreased to 47.8% and 45.8% after another 120 d oxic incubation. Bioconcentration factors were between 0.23 and 0.36 for rice, eggplant and pepper but reached to 0.5 in peanut, which contains more lipids in the edible portion than the other test crops. The estimated daily intake for vegetables was 0.01–0.07 μg BDE-209-equivalent kg⁻¹ bw day⁻¹, which is at least two orders of magnitude below the maximum acceptable oral dose (7 μg kg⁻¹ bw day⁻¹). Our work confirms that crop rotation from rice to vegetable enhanced the dissipation and debromination of BDE-209 in the soil, and indicate that sequential anoxic-oxic rotation practice is considered to be effective in remediation of environmental pollutants.
显示更多 [+] 显示较少 [-]Responses of an old and a modern Indian wheat cultivar to future O3 level: Physiological, yield and grain quality parameters
2020
A field study was conducted to understand the physiological responses, yield and grain quality of an old (HUW234) and a modern (HD3118) wheat cultivar exposed to elevated ozone (O₃). The cultivars were grown under ambient O₃ (NF) and ambient +20 ppb O₃ (NF+) conditions using open-top chambers (OTCs). The comparative study of an old and a modern cultivar showed variable physiological responses under elevated O₃ exposure. Elevated O₃ in old cultivar caused high reductions in Rubisco activity (Vcₘₐₓ) and electron transport rate (J) compared to modern cultivar with simultaneous reductions in the rate of photosynthesis and chlorophyll fluorescence. In modern cultivar, high stomatal density and conductance caused higher O₃ uptake thereby triggering more damage to the adjacent stomatal cells and photosynthetic pigments coupled with reductions in photosynthetic rate and photosynthetic nitrogen use efficiency (PNUE). Modern cultivar also showed relatively high reduction in grain yield compared to old one under NF + treatment. Furthermore, grain quality traits (such as starch, protein and amino acids) of modern cultivar were better than old cultivar under ambient O₃, but showed more deterioration under NF + treatment. Results thus indicated that modern cultivar is relatively more susceptible to O₃ and showed more negative impacts on plant performance, yield and quality of grains compared to old cultivar.
显示更多 [+] 显示较少 [-]Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties
2019
Cao, Xuerui | Wang, Xiaozi | Tong, Wenbin | Gurajala, Hanumanth Kumar | Lu, Min | Hamid, Yasir | Feng, Ying | He, Zhenli | Yang, Xiaoe
Heavy metals contamination in agricultural soil has become a worldwide problem, and soil characteristics modulate metal availability in soils. Four field experiments were conducted simultaneously to evaluate concentration and distribution of cadmium (Cd) and lead (Pb) in 39 oilseed rape cultivars at four agricultural locations with different contamination levels of Cd and Pb, as well as the influence of soil characteristics together with soil total and bioavailable Cd and Pb concentration on metal transfer from soil to oilseed rape. Shoot concentrations of Cd and Pb in oilseed rape cultivars ranged from 0.09 to 3.18 and from 0.01 to 10.5 mg kg⁻¹ across four sites. For most cultivars, Cd concentration in root or shoot were higher than pod and lowest in seed, while the highest Pb concentration was observed in root followed by shoot and seed. Stepwise multiple linear regression analysis allows for a better estimation of Cd and Pb concentration in oilseed rape while taking soil properties into consideration. The results demonstrated that Cd and Pb concentration in oilseed rape were correlated with soil organic matter (OM), cation exchange capacity (CEC), available phosphorus (AP), available potassium (AK), sand, soil total and available Cd and Pb concentration, and R² varied from 0.993 to 0.999 (P < 0.05). The Cd and Pb levels found in oilseed rape indicated its phytoextraction potential for Cd and Pb co-contaminated agricultural soils in winter without stopping agricultural activities.
显示更多 [+] 显示较少 [-]