细化搜索
结果 1-10 的 25
Refining the diagnostics of non-point source metals pollution to urban lakes based on interaction normalized PMF coupled with Bayesian network
2022
Chang, Xuan | Jia, Ziliang | Feng, Jiashen | Duan, Tingting | Li, Ying-Xia
Spatiotemporal variability complicates source apportionment of metals in urban lakes, especially when rainfall drives urban non-point source pollution. As, Cd, Cr, Pb, Hg, Ag, Co, Cu, Fe, Mn, Ni, Sb, Sr and Zn concentrations in 648 water samples collected before and after rain in 6 urban lakes of Beijing, China were determined during 2013–2015. The response of metals concentrations after rain to the interaction between rainfall and antecedent dry days was significant. Metals concentrations were normalized pursuant to the interaction effect as the input of positive matrix factorization (PMF) to develop the interaction normalized-PMF (IN-PMF). Four primary pollution sources were diagnosed. Sediment release was considered to be the main source of Fe, Co and Ni independent of rainfall. Hg, As and some Cr associated with pesticides and fertilizers were likely to come from soil erosion and runoff from green space. It is probable that road runoff was the dominant source for heavy metals related to traffic emissions, including Pb, Cd, Cu, Sb, Mn and Zn. Cr, Sr and some Cu and Zn as key elements of rooftops can be regarded as from roof runoff. The IN-PMF lowered roof and road runoff contributions and raised the contribution of soil erosion from green space, with Pb, Sb, Cu, Zn, Cd and Mn increasing by 15.9%, 10.7%, 13.1%, 12.2%, 13.3% and 16.8%. The results shed more light on the stormwater runoff pollution mitigation on impervious surfaces and metals enrichment problems in infiltration soil on green space in the low impact development (LID) setting. The Bayesian network revealed the spatial variability of transport and fate of metal elements from land surfaces to urban lakes, supplementing the secondary pollution sources from different land use. This study will provide new insights for source apportionment of non-point source pollution under the background of sponge city construction.
显示更多 [+] 显示较少 [-]Sediment records of polybrominated diphenyl ethers (PBDEs) in Huaihe River, China: Implications for historical production and household usage of PBDE-containing products
2019
Da, Chunnian | Wang, Ruwei | Ye, Jingsong | Yang, Shichao
In recent decades, rapid development of industrialization and urbanization caused adverse impact on the aqueous ecology and environment of the Huaihe River basin, China. In this work, three ²¹⁰Pb-dated sediment cores extracted from the middle reach of Huaihe River in Anhui Province, China were analyzed to elucidate the temporal trends and sources of polybrominated diphenyl ethers (PBDEs). Source diagnostics indicated that commercial Deca-BDE, Penta-BDE and Octa-BDE products and debromination of higher brominated BDE compounds were likely the PBDE sources in the Huaihe River. The prevalence of BDE-47 in the sediment cores was attributed to the extensive use of commercial Bromkal 70-5DE and Bromkal DE-71 in the region. BDE-28 was another congener that was prevalent in all sediment samples, suggesting that reductive debromination occurred in the sediments. Dramatic increase of PBDE concentrations in both three cores since the post-1980s could be attributed to the rapid expansion of production of electronic and telecommunication equipment and household usage in China. PBDE temporal trends in core S1 located at rural area mainly reflected the regional and national inputs deriving from long distance atmospheric transport, and the positive correlations between PBDE concentration in core S1 and gross domestic product (GDP) and household appliances production volumes (HPVs) were observed. PBDE inputs at site S3 mainly include the transport of contaminated water and re-suspended fine sediment particles from the upstream site S2, which was located in the industrial area and adjacent to e-waste recycling area. The government efforts to protect the environment and improve the e-waste management resulted in the progressive decrease trends in PBDE concentrations in cores S2 and S3.
显示更多 [+] 显示较少 [-]Effect of short-term ambient PM2.5 exposure on fasting blood glucose levels: A longitudinal study among 47,471 people in eastern China
2021
Zhan, Mengyao | Li, Zhongqi | Li, Xiaona | Tao, Bilin | Zhang, Qun | Wang, Jianming
As a common health indicator in physical examinations, fasting blood glucose (FBG) level measurements are widely applied as a diagnostic method for diabetes mellitus. Uncertain conclusions remained regarding the relationship between PM₂.₅ exposure and FBG levels. We enrolled 47,471 subjects who participated in annual physical examinations between 2017 and 2019. We collected their general characteristics and FBG levels, and environmental factors simultaneously. We applied the generalized additive model to evaluate the impact of short-term outdoor PM₂.₅ exposure on FBG levels. Among the entire population, the single-pollutant models showed that a 10 μg/m³ increase in PM₂.₅ significantly contributed to 0.0030, 0.0233, and 0.0325 mmol/L increases in FBG at lag 0–7 days, lag 0–21 days, and lag 0–28 days, respectively. Accordingly, in multipollutant models, when PM₂.₅ increased by 10 μg/m³, there was an elevation of 0.0361, 0.0315, 0.0357, and 0.0387 mmol/L in FBG for 8-day, 15-day, 22-day, and 29-day moving averages, respectively. Similarly, we observed a significant positive association between them in the normal population. Moreover, the effects could be modified by age in both the entire and normal populations. Decreasing the ambient PM₂.₅ concentrations can alleviate the elevation of FBG, which may significantly impact the burden of diabetes mellitus.
显示更多 [+] 显示较少 [-]Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae
2020
Alho, Lays de Oliveira Gonçalves | Souza, Jaqueline Pérola | Rocha, Giseli Swerts | Mansano, Adrislaine da Silva | Lombardi, Ana Teresa | Sarmento, Hugo | Melão, Mariada Graça Gama
Copper oxide nanoparticles (CuO NP) have been produced on a large scale due to their economically interesting thermophysical properties. This heightens the concern about risks they may pose on their release into the environment, possibly affecting non-target organisms. Microalga are important organisms in ecotoxicological studies as they are at the base of the aquatic food chain, but information about their biochemical and photosynthetic changes in response CuO NP are still scarce. We studied the effects of CuO NP in Raphidocelis subcapitata using morphological, photosynthetic and biochemical biomarkers. Our results showed that the NP affected microalgal population growth with 0.70 mg Cu L⁻¹ IC₅₀–₉₆ ₕ (inhibition concentration). Based on predicted environmental concentrations of Cu NPs in aquatic environments, our results indicate potential risks of the NP to microalgae. Algal cell size, granularity and photosynthetic efficiencies were affected by the CuO NP at 0.97 and 11.74 mg Cu L⁻¹. Furthermore, lipid metabolism was affected mostly at the highest NP concentration, but at environmentally relevant values (0.012 and 0.065 mg Cu L⁻¹) the production of sterols (structural lipids) and triacylglycerols (reserve lipid) increased. Moreover, we found evidence of cell membrane impairment at the highest CuO NP concentration, and, as a photosynthetic response, the oxygen evolving complex was its main site of action. To the best of our knowledge, this is the first study to date to investigate microalgal lipid composition during CuO NP exposure, showing that it is a sensitive diagnostic tool. This research demonstrated that CuO NP may affect the physiology of R. subcapitata, and because they were observed in a primary producer, we foresee consequences to higher trophic levels in aquatic communities.
显示更多 [+] 显示较少 [-]Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus)
2019
Renaud, Ludivine | Agarwal, Nisha | Richards, Dylan J. | Falcinelli, Silvia | Hazard, E Starr | Carnevali, Oliana | Hyde, John | Hardiman, Gary
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
显示更多 [+] 显示较少 [-]Evaluating the effectiveness of pollution control measures via the occurrence of DDTs and HCHs in wet deposition of an urban center, China
2017
Guo, Ling-Chuan | Bao, Lian-Jun | Li, Shao-Meng | Tao, Shu | Zeng, E. Y. (Eddy Y.)
Wet deposition is not only a mechanism for removing atmospheric pollutants, but also a process which reflects loadings of atmospheric pollutants. Our previous study on wet deposition examined the effectiveness of short-term control measures on atmospheric particulate pollution, which were partly effective for organic pollutants of current input sources. In the present study, dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), representative of legacy contaminants, were measured in the same samples collected throughout the entire year of 2010 in Guangzhou, a large urban center in South China. Concentrations of ∑DDT (sum of o,p′ and p,p′-DDT, o,p′ and p,p′-DDE, o,p′ and p,p′-DDD, and p,p′-DDMU) and ∑HCH (sum of α-, β-, γ-, and δ-HCH) in wet deposition were in the ranges of nd–69 (average: 1.8 ng L−1) and nd–150 ng L−1 (average: 5.1 ng L−1), respectively. In addition, the results of source diagnostics and backward air mass trajectories appeared to suggest the transport of antifouling paint derived DDTs from the coastal region off South China to Guangzhou. The combined wet and dry deposition flux of ∑HCH in the first quarter (January to March) was greater than that in the fourth quarter (October to December), while those of ∑DDT were comparable in the first and fourth quarters. Similar trends were also observed for the concentrations of ∑HCH and ∑DDT in aerosol samples. These results suggested the short-term pollution control measures implemented during the 16th Asian Games and 10th Asian Para Games (held in November and December 2010, respectively) did not work well for DDTs. The reduced input of HCHs during the fourth quarter was probably associated with the strict ban on lindane for food safety, which also exposed the weakness of control measures focusing mainly on the removal of atmospheric particulate matter.
显示更多 [+] 显示较少 [-]Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China
2017
Liu, Baoshuang | Wu, Jianhui | Zhang, Jiaying | Wang, Lu | Yang, Jiamei | Liang, Danni | Dai, Qili | Bi, Xiaohui | Feng, Yinchang | Zhang, Yufen | Zhang, Qinxun
Heze city, a medium-size city in Shandong province, Eastern China. Ambient PM2.5 samples were collected in urban area of Heze from August 2015 to April 2016, and chemical species and sources of PM2.5 were investigated in this paper. The results indicated that the average concentration of PM2.5 was 100.9 μg/m3 during the sampling period, and the water-soluble ions, carbonaceous species included elemental carbon (EC) and organic carbon (OC), as well as elements contributed 32.7–51.7%, 16.3% and 12.5%, respectively, to PM2.5. Pearson's correlation analysis showed that the existing form of NH4+ was more complex and diverse in spring/summer, and ammonium nitrate, ammonium sulfate and ammonium hydrogen sulfate might be major form of NH4+ in autumn/winter. Correlation analysis between PM2.5 and SO42−/NO3−, PM2.5 and OC/EC during different seasons suggested that mobile sources might make an important impact on the increase of PM2.5 concentrations in spring/summer, and stationary sources might play a critical role on the increase of PM2.5 concentrations in autumn/winter. Seven factors were selected in Positive Matrix Factorization (PMF) models analysis based on the Error Estimation (EE) diagnostics during different seasons. Secondary source had the highest contribution to PM2.5 in Heze for the whole year, and followed by coal combustion, vehicle exhaust, soil dust, construction dust, biomass burning and metal manufacturing, and their annual contributions to PM2.5 were 26.5%, 17.2%, 16.5%, 11.5%, 7.7%, 7.0% and 3.8%, respectively. The air masses that were originated from Mongolia reflected the features of large-scale and long-distance air transport; while the air masses that began in Jiangsu, Shandong and Henan showed the features of small-scale and short-distance. Shandong, Henan and Jiangsu were identified as the major potential sources-areas of PM2.5 by using potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models.
显示更多 [+] 显示较少 [-]Perfluoroalkyl substances and thyroid hormones in cord blood
2017
Tsai, Meng-Shan | Lin, Ching-Chun | Chen, Mei-Huei | Hsieh, Wu-Shiun | Chen, Pau-Chung
Perfluoroalkyl substances (PFASs) are pollutants that tend to accumulate in the environment and organisms. The animal and human studies to date have focused on thyroid function, but the results are inconsistent.A sample of 118 mother-infant pairs was obtained from the Taiwan Birth Panel Study (TBPS). Cord blood PFASs levels were evaluated using the Waters ACQUITY UPLC system coupled with a Waters Quattro Premier XE triple quadrupole mass spectrometer, and cord blood thyroid hormones were assessed using a Roche Analytics E170 modular analyser (Roche Diagnostics, Mannheim, Germany). PFASs concentrations were analysed in the final models to examine the associations between cord blood PFASs levels and thyroid hormone concentrations.The cord blood perfluorooctane sulfonate (PFOS) concentration was negatively associated with the cord blood thyroxine (T4) concentration [per ln unit: adjusted β (95% confidence interval, CI) = −0.458(−0.916, −0.001)]. Moreover, the level of cord blood thyroid stimulating hormone (TSH) was positively associated with the cord blood PFOS concentration [per ln unit: adjusted β (95% confidence interval, CI) = 0.346(0.101, 0.592)]. The sex stratified effects of PFOS on T4 were suggestive of differential effects in high-exposure groups compared with low-exposure group in boys.We found that cord blood thyroid hormone levels are affected by PFASs, with a negative association between T4 and PFOS and a positive association between TSH and PFOS. The causal associations of thyroid hormones and PFASs require further exploration.
显示更多 [+] 显示较少 [-]Advanced diagnostics applied to fish liver tumours: Relating pathology to underlying molecular aetiology
2013
Lerebours, Adélaïde | Bignell, John P. | Stentiford, Grant D. | Feist, Stephen W. | Lyons, Brett P. | Rotchell, Jeanette M.
Liver tumours in flatfish have been diagnosed using histopathology for decades in order to monitor the impacts of marine pollution in coastal and estuarine environments. This traditional method has been coupled with molecular analyses of tumours in the liver of the dab, Limanda limanda, in order to elucidate underpinning molecular level aetiology of such disease. A laser capture microdissection technique for molecular investigation of cancer has been applied in fish. The present study provides optimized steps for environmental sample utilisation: a procedure for field sample collection and handling; a method allowing reliable identification of lesions on frozen tissue sections; and, downstream molecular analyses of tumourigenesis markers (retinoblastoma gene) in laser microdissected samples. This approach facilitates the use of wild flatfish as a model of environmentally-induced tumourigenesis, and has wide applicability to any disease pathology for which the underpinning molecular aetiology is required.
显示更多 [+] 显示较少 [-]Polycyclic Aromatic Hydrocarbons (PAHs) in the intertidal sediments of Pearl River Estuary: Characterization, source diagnostics, and ecological risk assessment
2021
Wang, Ya-Su | Wu, Feng-Xia | Gu, Yang-Guang | Huang, Hong-Hui | Gong, Xiu-Yu | Liao, Xiu-Li
The surface intertidal sediments in the Pearl River Estuary of China were analyzed from multiple perspectives, including the distribution characteristics, potential sources, and biological risks of polycyclic aromatic hydrocarbons (PAHs). The average concentration of PAHs, ranging from 73.68 ng/g to 933.25 ng/g, was 346.78 ng/g. PAHs are mainly composed of the 2- and 3-ring PAHs, with naphthalene (Nap), phenanthrene (Phe), pyrene (Pyr), benzo(g,h, i) perylene (Dib), fluoranthene (Flua), and indeno (1,2,3-c,d) pyrene (Ind) as the dominant constituents. The principal component analysis combined with multiple linear regression showed that petroleum combustion and biomass/coal combustion have contributed 52.78% and 40.53%, respectively, to the PAHs in intertidal sediments of Pearl River Estuary. The occurrence of adverse biological effects as a result of PAH contamination in the intertidal sediments of Pearl River Estuary has increased by 8% based on the mean value of the probable effect quotient.
显示更多 [+] 显示较少 [-]