细化搜索
结果 1-10 的 482
Mutagenicity and genotoxicity assessment of the emerging mycotoxin Versicolorin A, an Aflatoxin B1 precursor
2023
Al-Ayoubi, Carine | Alonso-Jauregui, Maria | Azqueta, Amaya | Vignard, Julien | Mirey, Gladys | Rocher, Ophelie | Puel, Olivier | Oswald, Isabelle P. | Vettorazzi, Ariane | Soler-Vasco, Laura | Biosynthèse & Toxicité des Mycotoxines (ToxAlim-BioToMyc) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Universidad de Navarra [Pamplona] (UNAV) | Génotoxicité & Signalisation (ToxAlim-GS) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This research was supported in part by the ANR grants "Versitox" (ANR-18-CE21-0009) "EmergingMyco" (ANR-18-CE34-0014) , the SV 947/19 grant "CAPES-COFECUB" and the Spanish "Ministerio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion" (AGL 2017-85732-R) (MINECO/AEI/FEDER, UE) . | ANR-18-CE21-0009,VersiTox,Toxicité et remédiation de la Versicolorine A, une nouvelle toxine fongique(2018) | ANR-18-CE34-0014,EmergingMyco,Les mycotoxines émergentes : un nouveau risque pour l'Homme et les animaux ?(2018)
International audience | Aflatoxin B1 (AFB1) is the most potent natural carcinogen among mycotoxins. Versicolorin A (VerA) is a precursor of AFB1 biosynthesis and is structurally related to the latter. Although VerA has already been identified as a genotoxin, data on the toxicity of VerA are still scarce, especially at low concentrations. The SOS/umu and miniaturised version of the Ames test in Salmonella Typhimurium strains used in the present study shows that VerA induces point mutations. This effect, like AFB1, depends primarily on metabolic activation of VerA. VerA also induced chromosomal damage in metabolically competent intestinal cells (IPEC-1) detected by the micronucleus assay. Furthermore, results from the standard and enzyme-modified comet assay confirmed the VerA-mediated DNA damage, and we observed that DNA repair pathways were activated upon exposure to VerA, as indicated by the phosphorylation and/or relocation of relevant DNA-repair biomarkers (γH2AX and 53BP1/FANCD2, respectively). In conclusion, VerA induces DNA damage without affecting cell viability at concentrations as low as 0.03 μM, highlighting the danger associated with VerA exposure and calling for more research on the carcinogenicity of this emerging food contaminant.
显示更多 [+] 显示较少 [-]Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil
2022
Habitat loss and fragmentation together represent the most significant threat to the world's biodiversity. In order to guarantee the survival of this diversity, the monitoring of bioindicators can provide important insights into the health of a natural environment. In this context, we used the comet assay and micronucleus test to evaluate the genotoxic susceptibility of 126 bats of eight species captured in soybean and sugarcane plantation areas, together with a control area (conservation unit) in the Cerrado savanna of central Brazil. No significant differences were found between the specimens captured in the sugarcane and control areas in the frequency of micronuclei and DNA damage (comet assay). However, the omnivore Phyllostomus hastatus had a higher frequency of nuclear abnormalities than the frugivore Carollia perspicillata in the sugarcane area. Insectivorous and frugivorous bats presented a higher frequency of genotoxic damage than the nectarivores in the soybean area. In general, DNA damage and micronuclei were significantly more frequent in agricultural environments than in the control area. While agricultural development is an economic necessity in developing countries, the impacts on the natural landscape may result in genotoxic damage to the local fauna, such as bats. Over the medium to long term, then DNA damage may have an increasingly negative impact on the wellbeing of the local species.
显示更多 [+] 显示较少 [-]Occupational lead exposure on genome-wide DNA methylation and DNA damage
2022
Meng, Yu | Zhou, Mengyu | Wang, Tuanwei | Zhang, Guanghui | Tu, Yuting | Gong, Shiyang | Zhang, Yunxia | Christiani, David C. | Au, William | Liu, Yun | Xia, Zhao-lin
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
显示更多 [+] 显示较少 [-]Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays
2022
Ojo, Atinuke F. | Peng, Cheng | Annamalai, Prasath | Megharaj, Mallavarapu | Ng, J. (Jack)
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqᵤₑₒᵤₛ One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
显示更多 [+] 显示较少 [-]Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes
2022
Arias, Silvana | Estrada, Verónica | Ortiz, Isabel C. | Molina, Francisco J. | Agudelo, John R.
We investigated the biological response of soluble organic fraction (SOF) and water-soluble fraction (WSF) extracted from particulate matter (PM) emitted by an automotive diesel engine operating in a representative urban driving condition. The engine was fueled with ultra-low sulfur diesel (ULSD), and its binary blends by volume with 13% of butanol (Bu13), and with hydrotreated vegetable oil (HVO) at 13% (HVO13) and 20% (HVO20). Cytotoxicity, genotoxicity, oxidative DNA damage and ecotoxicity tests were carried out, and 16 polycyclic aromatic hydrocarbons (PAH) expressed as tbenzo(a)pyrene total toxicity equivalent (BaP-TEQ) were also analyzed. The Hepatocarcinoma epithelial cell line (HepG2) was exposed to SOF for 24 h and analyzed using comet assay, with the inclusion of formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (Endo III) to recognize oxidized DNA bases. The WSF was evaluated through acute ecotoxicity tests with the aquatic microcrustacean Daphnia pulex (D. Pulex). Results showed that there was no cytotoxic activity for all tested SOF concentrations. Genotoxic responses by all the SOF samples were at same level, except for the HVO13 which was weaker in the absence of the enzymes. The addition of the FPG and Endo III enzymes resulted in a significant increase in the comet tail, indicating that the DNA damage from SOF for all tested fuel blends involves oxidative damage including a higher level of oxidized purines for ULSD and Bu13 in comparison with HVO blends, but the oxidized pyrimidines for HVO blends were slightly higher compared to Bu13. The WSF did not show acute ecotoxicity for any of the fuels. Unlike other samples, Bu13-derived particles significantly increase the BaP-TEQ. The contribution to the genotoxic activity and oxidative DNA from SOF was not correlated to BaP-TEQ, which means that the biological activity of PM might be affected also by other toxic compounds present in particulate phase.
显示更多 [+] 显示较少 [-]Biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine
2022
Nuchan, Pattanan | Kovitvadhi, Uthaiwan | Sangsawang, Akkarasiri | Kovitvadhi, Satit | Klaimala, Pakasinee | Srakaew, Nopparat
The present study aimed to evaluate biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine (ATZ). The mussels were exposed to environmentally-relevant concentrations of ATZ (0, 0.02 and 0.2 mg/L) and a high concentration (2 mg/L) for 0, 7, 14, 21 and 28 days. Tissues comprising male and female gonads, digestive glands and gills were collected and assessed for ethoxyresorufin-O-deethylase (EROD) activity, glutathione S-transferase (GST) activity, multixenobiotic resistance mechanism (MXR), histopathological responses, DNA fragmentation and bioaccumulation of ATZ and its transformation derivatives, desethylatrazine (DEA) and desisopropylatrazine (DIA). Additionally, circulating estradiol levels were determined. It appeared that ATZ did not cause significant changes in activities of EROD, GST and MXR. There were no apparent ATZ-mediated histopathological effects in the tissues, with the exception of the male gonads exhibiting aberrant aggregation of germ cells in the ATZ-treated mussels. Contrarily, ATZ caused significant DNA fragmentation in all tissues of the treated animals in dose- and time-dependent manners. In general, the circulating estradiol levels were higher in the females than in the males. However, ATZ-treated animals did not show significant alterations in the hormonal levels, as compared with those of the untreated animals. Herein, we showed for the first time differentially spatiotemporal distribution patterns of bioaccumulation of ATZ, DEA and DIA, with ATZ and DEA detectable in the gonads of both sexes, DEA and DIA in the digestive glands and only DEA in the gills. The differential distribution patterns of bioaccumulation of ATZ and its derivatives among the tissues point to different pathways and tissue capacity in transforming ATZ into its transformation products. Taken together, the freshwater mussel H. bialata was resistant to ATZ likely due to their effective detoxification. However, using DNA damage as a potential biomarker, H. bialata is a promising candidate for biomonitoring aquatic toxicity.
显示更多 [+] 显示较少 [-]Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage
2021
Das, Sourav Kumar | Ali, Manjoor | Shetake, Neena G. | Dumpala, Rama Mohan R. | Pandey, Badri N. | Kumar, Amit
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1–100 μg/ml, 24–72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
显示更多 [+] 显示较少 [-]Curcumin suppresses cell growth and attenuates fluoride-mediated Caspase-3 activation in ameloblast-like LS8 cells
2021
The trace element fluoride can be beneficial for oral health by preventing dental caries. However, fluoride is also known as an environmental pollutant. Fluoride pollution can lead to fluoride over-ingestion and can cause health issues, including dental fluorosis. Curcumin attenuated fluoride-induced toxicity in animal models, however the molecular mechanisms of how curcumin affects fluoride toxicity remain to be elucidated. We hypothesized that curcumin attenuates fluoride toxicity through modulation of Ac-p53. Here we investigated how curcumin affects the p53-p21 pathway in fluoride toxicity.LS8 cells were treated with NaF with/without curcumin. Curcumin significantly increased phosphorylation of Akt [Thr308] and attenuated fluoride-mediated caspase-3 cleavage and DNA damage marker γH2AX expression. Curcumin-mediated attenuation of caspase-3 activation was reversed by Akt inhibitor LY294002 (LY). However, LY did not alter curcumin-mediated γH2AX suppression. These results suggest that curcumin inhibited fluoride-mediated apoptosis via Akt activation, but DNA damage was suppressed by other pathways. Curcumin did not suppress/alter fluoride-mediated Ac-p53. However, curcumin itself significantly increased Ac-p53 and upregulated p21 protein levels to suppress cell proliferation in a dose-dependent manner. Curcumin suppressed fluoride-induced phosphorylation of p21 and increased p21 levels within the nuclear fraction. However, curcumin did not reverse fluoride-mediated cell growth inhibition. These results suggest that curcumin-induced Ac-p53 and p21 led to cell cycle arrest, while curcumin attenuated fluoride-mediated apoptosis via activation of Akt and suppressed fluoride-mediated DNA damage.By inhibiting DNA damage and apoptosis, curcumin may potentially alleviate health issues caused by fluoride pollution. Further studies are required to better understand the mechanism of curcumin-induced biological effects on fluoride toxicity.
显示更多 [+] 显示较少 [-]Bisphenol A exposure induces apoptosis and impairs early embryonic development in Xenopus laevis
2021
Ge, Yaming | Ren, Fei | Chen, Lingli | Hu, Dongfang | Wang, Xinrui | Cui, Yunli | Suo, Yu | Zhang, Hongli | He, Junping | Yin, Zhihong | Ning, Hongmei
Bisphenol A (BPA), an endocrine-disrupting chemical that is largely produced and used in the plastics industry, causes environmental pollution and is absorbed by humans through consumption of food and liquids in polycarbonate containers. BPA exerts developmental and genetic toxicities to embryos and offsprings, but the embryotoxicity mechanism of this chemical is unclear. This study aimed to explore the toxic effect of BPA on embryonic development and elucidate its toxicity mechanism. Embryos of Xenopus laevis as a model were treated with different concentrations (0.1, 1, 10, and 20 μM) of BPA at the two-cell stage to investigate the developmental toxicity of BPA. Embryonic development and behaviors were monitored 24 h–96 h of BPA exposure. BPA concentrations greater than 1 μM exerted significant teratogenic effects on the Xenopus embryos, which showed short tail axis, miscoiled guts, and bent notochord as the main malformations. The 20 μM BPA-treated embryos were seriously damaged in all aspects and exhibited deformity, impaired behavioral ability, and tissue damage. The DNA integrity and apoptosis of the Xenopus embryos were also investigated. Exposure to BPA concentrations higher than 0.1 μM significantly induced DNA damage (p < 0.05). The 10 and 20 μM BPA-treated embryos exhibited higher levels of cleaved caspase-3 protein than the control. The ratios of bax/bcl-2 mRNA were significantly higher in the 10 μM and 20 μM-treated embryos than the ratio in the control group. Overall, data indicated that BPA can delay the early development, induce DNA damage and apoptosis, and eventually cause multiple malformations in Xenopus embryos.
显示更多 [+] 显示较少 [-]Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish
2021
Bonomo, Marina Marques | Sachi, Ivelise Teresa de Castro | Paulino, Marcelo Gustavo | Fernandes, Joaõ Batista | Carlos, Rose Maria | Fernandes, Marisa Narciso
Aquatic ecosystem health is the main concern to increasing pesticides application to control agricultural pests as it is the ultimate receptor of such materials. This study evaluated the impact of new metal-insecticide, the [Mg(hesp)₂(phen)], referred as MgHP, on fish using physiological, genetic, biochemical, and morphological biomarkers. The fish, Prochilodus lineatus, was exposed to 0 (control), 1, 10, 100, 1000 μg L⁻¹ MgHP, for 24 and 96 h. MgHP was not lethal but caused genotoxicity, altered hematological variables and, the activity of antioxidant and biotransformation enzymes and histology of liver, depending on concentration and time exposure. Hematocrit and erythrocyte number (RBC) increased without change hemoglobin content resulting in changes in hematimetric indexes after 24 h; after 96 h, only RBC was changed. Erythrocyte nuclear abnormalities and crenate cells increased after 24 h but, not after 96 h. Erythrocytes and hepatocytes indicated instability in DNA integrity however, the absence of micronuclei suggested DNA damage repairment. After 24 h, the antioxidant defense system and the phase II biotransformation enzyme was responsiveness and catalase activity decreased at high MgHP concentrations; the antioxidant response was triggered after 96 h. Hepatocyte hypertrophy, intracellular cytoplasmic substances, cytoplasm degeneration, melanomacrophage and hyperemia increased in fish exposed from 10 μg L⁻¹ to higher MgHP concentrations; the organ alteration index increased as MgHP concentration increased showing dose-dependence. Most of hematological and genotoxic effects occurred after 24 h exposure evidencing potential recover capability of organism by activation of the antioxidant defense system and DNA repairment mechanisms. Nevertheless, the histopathological changes in the liver was maintained over time at high MgHP concentrations, a concentration usually no environmental relevant. In conclusion, this data reinforced the importance of continuing research on MgHP effects in other organisms considering the promising use of such compound to control the leaf-cutter ants and other insects.
显示更多 [+] 显示较少 [-]