细化搜索
结果 1-10 的 58
Contrasting exchanges of nitrogen and phosphorus across the sediment–water interface during the drying and re-inundation of littoral eutrophic sediment
2019
Liu, Cheng | Du, Yiheng | Chen, Kaining | Ma, Shuzhan | Chen, Bingfa | Lan, Yuanming
High water level fluctuations (WLFs) lead to periodic drying and re-inundation of sediments in the littoral area of eutrophic lakes. In this study, a series of littoral sediment cores were dried for different periods (5–30 d) and rewetted for 48 h. The sediment cores that dried for 30 d were then re-inundated for 90 d. The exchanges of nitrogen (N) and phosphorus (P) across the sediment–water interface (SWI) and the mechanisms were studied. The results showed that ammonium nitrogen (NH4+–N) fluxes increased after 5–25 d of drying, which was followed by an obvious decrease after 30 d of drying. The decreased NH4+–N fluxes remained at low levels during the 90 d re-inundation period. The soluble reactive P (SRP) fluxes decreased significantly after 15 d of drying. However, further re-inundation increased the SRP fluxes to their initial levels. The decreased water content and porosity, the oxidation of the sediment during drying, and the associated transformations of the N and P fractions in the sediment from drying to re-inundation influenced the exchanges of NH4+–N and SRP across the SWI. The decrease of labile NH4+–N in the sediment during drying was non-reversible, while the transformations between redox sensitive P (Fe-P) and aluminum-bound P were more likely to be reversible from drying to re-inundation. The increase of Fe-P during drying and dissolution of Fe-P during the re-inundation were responsible for the development of SRP fluxes from drying to re-inundation. Therefore, the periodic drying and re-inundation of the littoral eutrophic sediments reduced the release of NH4+–N but accelerated the release of SRP from the sediment. This should be given more consideration for the remediation and management of eutrophication in the lake and other similar lakes with high WLFs.
显示更多 [+] 显示较少 [-]A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet
2019
Jiang, Binfan | Xie, Yulei | Xia, Dehong | Liu, Xiangjun
Aerosol particulate matter with dynamic diameter smaller than 2.5 μm (PM₂.₅) is the main cause for haze pollution in China. As a dominant precursor of PM₂.₅, SO₂ emitted from industrial process is now strictly controlled by using limestone/gypsum Wet Flue Gas Desulfurization (WFGD) system in China. However, a phenomenon that fine particle derived from WFGD is recently addressed, and is suggested to be a potential source of primary PM₂.₅. Herein, a first investigation into the particle generation mechanism in WFGD system is conducted with a novel droplet (containing particles) drying and breakage model. The proposed model considers a random and porous crust instead of the previous regular crust assumption, and is verified by comparing the modeling results with measurements. An orthogonal test with four factors and three levels is carried out through modeling calculation, and flue gas temperature (Tg) in the inlet is found to be a governing parameter for PM₂.₅ yields in WFGD. With Tg in range of 120–160 °C, PM₂.₅ yields in desulfurizing tower can reach a maximum value at ∼2 × 10⁸ cm⁻³ under typical WFGD condition. To avoid this situation and reduce the PM₂.₅ generation, Tg is suggested to be lower than 120 °C. Additionally, a new insight of the elimination effect of gas-gas heater (GGH) on “gypsum rain” in WFGD system is provided.
显示更多 [+] 显示较少 [-]The effect of hydrodynamic forces of drying/wetting cycles on the release of soluble reactive phosphorus from sediment
2019
Ding, Jue | Hua, Zulin | Chu, Kejian
Soluble reactive phosphorus (SRP) that is released from sediment plays an important role in contributing to a lake's eutrophication. Much of the work that has studied sediment release has been conducted in the submerged bottom sediment of lakes. Less attention has paid to the littoral zones near land boundaries where the hydrodynamic disturbance of drying/wetting cycles dominates. To date, the release mechanism under drying/wetting cycles has not been revealed quantitatively. In this study, we conducted a series of laboratory experiments to evaluate the effect of varied frequencies of drying/wetting cycles to the efflux of SRP from sediment. We tested SRP, Fe2+, pH, and redox condition (pE) in overlying water under three frequencies of 24, 9, and 2.77 day−1 (F1, F2, and F3, respectively). SRP concentrations of F1, F2, and F3 experimental conditions were 3.46, 1.73, and 1.38 times that of a static experimental condition, respectively, showing a significant difference (p < 0.05) among the conditions. The overlying water under drying/wetting cycles varied in weak-base and low-redox status, which facilitated ion release. The SRP concentration of the porewater varied with the different frequencies of drying/wetting cycles. These results suggested that the variation of SRP in the porewater was strongly correlated with SRP release (R2 = 0.809). Drying/wetting cycles enhanced the mobilization and release of SRP from the sediment to the overlying water through porewater exchange. The evaluation model emphasized that porewater exchange made the greatest contribution to SRP release and a higher frequency of drying/wetting cycles may have promoted this exchange of porewater between the sediment and overlying water, thus facilitating the release of SRP.
显示更多 [+] 显示较少 [-]Influence of exposure time on phosphorus composition and bioavailability in wetland sediments from Poyang lake, since the operation of the Three Gorges Dam
2020
Ni, Zhaokui | Wang, Shengrui | Wu, Yue | Liu, Xiaofei | Lin, Ripeng | Liu, Zhezhe
The role of exposure time on wetland sediment-bound phosphorus (P) biogeochemical behavior is studied in Lake Poyang after the operation of the Three Gorges Dam (TGD). The multiple P compounds primarily include orth–P (88.3%), mono–P (8.9%), DNA–P (2.1%), and pyro–P (0.8%) in the exposed sediments. A significant decreasing trend of orth–P occurred after the operation of the Three Gorges Dam (TGD), with the mean concentration decreasing from 175.9 to 142.5 mg kg⁻¹ from 2007 to 2012 (ANOVA: P < 0.05), whereas the temporal change in biogenic P showed great variability. The plant distribution pattern and the increase in plant biomass due to decreased water levels might be the reason that caused variations in the P species. Furthermore, the content of orth–P, mono–P, DNA–P, and pyro–P showed increasing trends as sediment exposure time increased. However, the enzyme hydrolysis rate of DNA–P decreased with exposure time and may cause the bioavailability of biogenic P to decrease. Despite the fact that the bioavailability of biogenic P might decline in the short term, the favorable environmental conditions for P release in sediment rewetting processes, together with the increase in orth–P and biogenic P due to extended exposure time, indicate that these large additions of P would enter the overlying water and cause water quality decline once the sediment is submerged underwater during the next wet season. An environmental process analysis showed that the increased exposure time induced sediment environmental conditions changes that played an important role in the biogeochemical cycle of P and may be an important way of P replenishment in Lake Poyang. The results of this study help provide a better understanding of the role of sediment drying/wetting cycles in nutrient biogeochemical behavior and fates in wetland ecosystems.
显示更多 [+] 显示较少 [-]Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice
2020
Lv, HaiQin | Chen, Wenxiang | Zhu, Yanming | Yang, JiGang | Mazhar, Sohaib H. | Zhao, PingPing | Wang, Lizhen | Li, Yuanping | Azam, Syed Muhammad | Ben Fekih, Ibtissem | Liu, Hong | Rensing, Christopher | Feng, RenWei
The co-contamination of arsenic (As) and cadmium (Cd) in soils is a common problem. Selenium (Se) can reduce the uptake of As and Cd in plants, and in practice, the alternate wetting and drying is a common culture mode in rice production. However, it is unknown whether Se can efficiently reduce As and Cd concentrations in crops suffering from a high-level contamination of As and Cd under different soil water conditions. In this study, we assessed the efficiency and risks of selenite [Se(IV)], in a pot experiment, to reduce the uptake of As and Cd in a rice plant (YangDao No 6) growing in a heavily contaminated soil by As and Cd (pH 7.28) under different soil water conditions. The results showed that Se(IV) failed to control the grain total As and Cd concentrations within their individual limited standard (0.2 mg kg⁻¹) despite that Se(IV) significantly reduced the grain total As and Cd concentrations. The soil drying treatment alone could reduce the accumulation of arsenite [As(III)] in the grains, but additional Se(IV) stimulated the accumulation of As(III) in the grains under soil drying conditions. In addition, the addition of Se(IV) enhanced the As and Cd concentrations in the shoots and/or roots of rice plants under certain conditions. The above results all suggested that the utilization of Se(IV) in a high contaminated soil by As and Cd cannot well control the total concentrations of As and Cd in plants. In this study, the available concentrations of As and Cd in the rhizosphere soil, the rhizosphere soil pH, the formation of root iron/manganese plaques and the concentrations of essential elements in the grains were monitored, and the related mechanisms on the changes of these parameters were also discussed. This study will give a guideline for the safe production of rice plants in a heavily co-contaminated soil by As and Cd.
显示更多 [+] 显示较少 [-]Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation
2018
Liu, Jiang | Jiang, Tao | Wang, Fei-Yue | Zhang, Jinzhong | Wang, Dingyong | Huang, Rong | Yin, Deliang | Liu, Zeyan | Wang, Jinzhu
The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China is a unique geomorphological unit that undergoes annual flooding and drying alternation cycle. The alternating redox conditions within the WLFZ are expected to result in dynamic cycling of reduced sulfur species, which could affect mercury (Hg) methylation due to the high affinity of reduced sulfur species to both inorganic divalent mercury (Hg(II)i) and methylmercury (MeHg). Variations of inorganic sulfur species (measured as acid volatile sulfide, chromium reductive sulfur, elemental sulfur, and water-soluble sulfate), total mercury (THg) and MeHg were studied at two typical WLFZ sites in the TGR from July 2015 to June 2016. Whereas the water-soluble sulfate contents stayed essentially constant, the reduced inorganic sulfur contents varied greatly as the water level changed. Compared with the control soils, the MeHg contents in the WLFZ soils increased, suggesting that water level fluctuations accelerated the methylation process of Hg(II)i. In situ Hg(II)i-methylation also appeared to occur in the sub-layer of the drained sediment during the draw-down season. The significant correlation between MeHg and elemental sulfur (S(0)) further suggests that polysulfides may have played a role in Hg(II)i-methylation by increasing the bioavailable Hg(II)i content in the WLFZ of the TGR.
显示更多 [+] 显示较少 [-]Paddy field – A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation
2014
Chen, Chen | Yu, Chunna | Shen, Chaofeng | Tang, Xianjin | Qin, Zhihui | Yang, Kai | Hashmi, Muhammad Zaffar | Huang, Ronglang | Shi, Huixiang
The environmental pollution and health risks caused by the improper disposal of electric and electronic waste (e-waste) have become urgent issues for the developing countries. One of the typical pollutants, polychlorinated biphenyls (PCBs), is commonly found in farmland in Taizhou, a major hotspot of e-waste recycling in China. This study investigated the amount of PCB residue in local farmlands. Biotransformation of PCBs was further studied under different water management conditions in paddy field with or without rice cultivation, with a special focus on the alternating flooded and drying processes. It was found that paddy field improved the attenuation of PCBs, especially for highly chlorinated congeners. In the microcosm experiment, 40% or more of the initial total PCBs was removed after sequential flood–drying treatments, compared to less than 10% in the sterilized control and 20% in the constant-drying system. Variation in the quantity of PCBs degrading and dechlorinating bacterial groups were closely related to the alteration of anaerobic–aerobic conditions. These results suggested that alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs, which provided a favorable environment for natural PCB attenuation.
显示更多 [+] 显示较少 [-]Significant restructuring and light absorption enhancement of black carbon particles by ammonium nitrate coating
2020
Yuan, Zheng | Zheng, Jun | Ma, Yan | Jiang, Youling | Li, Yilin | Wang, Ziqiong
Field observations have suggested that particulate nitrate can promote the aging of black carbon (BC), yet the mechanisms of the aging process and its impacts on BC’s light absorption are undetermined. Here we performed laboratory simulation of internal mixing of flame-generated BC aggregates with ammonium nitrate. Variations in particle size, mass, coating thickness, effective density, dynamic shape factor, and optical properties were determined online by a suite of instruments. With the development of coatings, the particle size initially decreased until reaching a coating thickness of ∼10 nm and then started increasing, accompanied by an increase in effective density and a decrease in dynamic shape factor, reflecting the transformation of BC particles from highly fractal to near-spherical morphology. This is partially attributable to the restructuring of BC cores to more compact forms. Exposing coated particles to elevated relative humidity (RH) led to additional BC morphology changes, even after drying. Particle light absorption and scattering were also amplified with ammonium nitrate coating, increasing with coating thickness and RH. For BC particles with a 17.8 nm coating, absorption and scattering were increased by 1.5- and 7.9-fold when cycled through 70% RH (5-70-5% RH), respectively. The irreversible restructuring of the BC core caused by condensation of ammonium nitrate and water altered both absorption and scattering, with a magnitude comparable to or even exceeding the effects of increased coating. Results show that ammonium nitrate is among the most efficient coating materials with respect to modifying BC morphology and optical properties compared with other inorganic and organic species investigated previously. Accordingly, mitigation of nitrate aerosols is necessary for the benefits of both air pollution control and reducing the impacts of BC on visibility impairment and radiative forcing on climate change. Our results also pointed out that the effect of BC core restructuring needs to be considered when evaluating BC’s light absorption enhancement.
显示更多 [+] 显示较少 [-]Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits
2019
Smalling, Kelly L. | Anderson, Chauncey W. | Honeycutt, R Ken | Cozzarelli, Isabelle M. | Preston, Todd | Hossack, Blake R.
Energy production in the Williston Basin, located in the Prairie Pothole Region of central North America, has increased rapidly over the last several decades. Advances in recycling and disposal practices of saline wastewaters (brines) co-produced during energy production have reduced ecological risks, but spills still occur often and legacy practices of releasing brines into the environment caused persistent salinization in many areas. Aside from sodium and chloride, these brines contain elevated concentrations of metals and metalloids (lead, selenium, strontium, antimony and vanadium), ammonium, volatile organic compounds, hydrocarbons, and radionuclides. Amphibians are especially sensitive to chloride and some metals, increasing potential effects in wetlands contaminated by brines. We collected bed sediment and larval amphibians (Ambystoma mavortium, Lithobates pipiens and Pseudacris maculata) from wetlands in Montana and North Dakota representing a range of brine contamination history and severity to determine if contamination was associated with metal concentrations in sediments and if metal accumulation in tissues varied by species. In wetland sediments, brine contamination was positively associated with the concentrations of sodium and strontium, both known to occur in oil and gas wastewater, but negatively correlated with mercury. In amphibian tissues, selenium and vanadium were associated with brine contamination. Metal tissue concentrations were higher in tadpoles that graze compared to predatory salamanders; this suggests frequent contact with the sediments could lead to greater ingestion of metal-laden materials. Although many of these metals may not be directly linked with energy development, the potential additive or synergistic effects of exposure along with elevated chloride from brines could have important consequences for aquatic organisms. To effectively manage amphibian populations in wetlands contaminated by saline wastewaters we need a better understanding of how life history traits, species-specific susceptibilities and the physical-chemical properties of metals co-occurring in wetland sediments interact with other stressors like chloride and wetland drying.
显示更多 [+] 显示较少 [-]Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations
2018
Hashimoto, Yohey | Kanke, Yoshiaki
A substantial amount of sulfate is often supplied in paddy fields with concomitant applications of chemical fertilizers and manure for rice growth. It is unclear how solubility and speciation of arsenic (As) are affected by the levels of soil sulfate and their relationship to soil redox status and sulfur (S) and iron (Fe) speciation in a short cycle of soil reducing (flooding) and oxidizing (drying) periods. The objective of this study was to investigate the solubility of As in relation to chemical speciation of As and S in different levels of soil sulfate through a time series of measurements during a 40-day reduction period (Eh < −130 mV) followed by a 32-day reoxidation period (Eh > 400 mV) using X-ray absorption fine structure (XAFS) spectroscopy. An excess of sulfate decreased extractable and dissolved As in the soil reducing period due to retardation of soil reduction process that decreased soluble As(III) in the soil solid phase. The As species at the end of soil reducing period were 38–41% As(V), 46–51% As(III), and 11–13% As2S3-like species, regardless of initial S treatments. In the following soil reoxidation, As2S3-like species were sensitive to oxidation and disappeared completely in the first 2 days when the Eh value increased rapidly above 160 mV. The addition of extra sulfate to the soil did not result in the formation of neither reduced S species nor As2S3-like species. About 50% of As(III) to the total As persisted over 32 days of soil reoxidation period (Eh > 400 mV), suggesting some mechanisms against oxidation of As(III) such as physical sequestration in soil microsites. This study demonstrates that the extra SO4 in paddy soils can help mitigate the dissolution of As in reduction and reoxidation periods.
显示更多 [+] 显示较少 [-]